7,612 research outputs found

    The production of university technological knowledge in European regions: evidence from patent data

    Full text link
    This paper explores the European regional distribution of the production of new technological knowledge generated by universities, as measured by patent counts. The empirical basis for this study is a unique panel data set of 4,580 European university patents from 1998 to 2004. Our main findings were a strong regional and sectoral concentration of patents, and no average relation between university technological specialization and industrial specialization. Furthermore, our results suggest that variations in regional R&D funding do affect patenting activities in regions, with elasticities showing constant returns to scale, but no evidence was found regarding the industrial potential of the region encouraging the production of new university technological knowledge

    Preliminary Measurements of Be-10/Be-7 Ratio in Rainwater for Atmospheric Transport Analysis

    Get PDF
    The meteoric cosmogenic beryllium has been used as an essential geophysical tracer in the analysis of atmospheric flows and erosion soils since 1960. The first measurements Be-7 and Be-10 concentrations in rainwater from Mexico, have been carried out by using gamma decay spectroscopy and AMS techniques, respectively for each isotope. With this it was possible to report a preliminar value for the Be-10/Be-7 isotopic ratio in such environmental samples. The present work described preliminary results related to rainwater collected at mountain and metropolitan areas. Results are compared with predictions and previous measurements for both radioisotopes, observing a very sensible behavior particularly for the case of Be-7 activities

    Relationship between the Daily Rhythm of Distal Skin Temperature and Brown Adipose Tissue 18F-FDG Uptake in Young Sedentary Adults

    Get PDF
    The present study examines whether the daily rhythm of distal skin temperature (DST) is associated with brown adipose tissue (BAT) metabolism as determined by 18F-fluorodeoxyglucose (18F-FDG) uptake in young adults. Using a wireless thermometer (iButton) worn on the nondominant wrist, DST was measured in 77 subjects (26% male; age 22 ± 2 years; body mass index 25.2 ± 4.8 kg/m2) for 7 consecutive days. The temperatures to which they were habitually exposed over the day were also recorded. The interday stability of DST was calculated from the collected data, along with the intraday variability and relative amplitude; the mean temperature of the 5 and 10 consecutive hours with the maximum and minimum DST values, respectively; and when these hours occurred. Following exposure to cold, BAT volume and mean and peak standardized 18F-FDG uptake (SUVmean and SUVpeak) were determined for each subject via static 18F-FDG positron emission tomography/computed tomography scanning. Relative amplitude and the time at which the 10 consecutive hours of minimum DST values occurred were positively associated with BAT volume, SUVmean, and SUVpeak (p ≤ 0.02), whereas the mean DST of that period was inversely associated with the latter BAT variables (p ≤ 0.01). The interday stability and intraday variability of the DST were also associated (directly and inversely, respectively) with BAT SUVpeak (p ≤ 0.02 for both). All of these associations disappeared, however, when the analyses were adjusted for the ambient temperature to which the subjects were habitually exposed. Thus, the relationship between the daily rhythm of DST and BAT activity estimated by 18F-FDG uptake is masked by environmental and likely behavioral factors. Of note is that those participants exposed to the lowest ambient temperature showed 3 to 5 times more BAT volume and activity compared with subjects who were exposed to a warmer ambient temperature

    HLB: el enfoque fitopatológico: situación del Noroeste Argentino

    Get PDF
    Desde 2004, el Laboratorio de Fitopatología de la EEAOC es Laboratorio Reconocido de la Red del Servicio Nacional de Sanidad y Calidad Agroalimentaria (Senasa) para diagnóstico de Xanthomonas citri subsp. citri (cancrosis de los cítricos) y Guignardia citricarpa (mancha negra de los cítricos). En 2006, se incorpora a este registro el diagnóstico de HLB. Hoy opera, respecto de esta enfermedad, como uno de los laboratorios de referencia de la Red Nacional del Senasa en el marco del Programa Nacional de Prevención del HLB.Fil: Fogliata, Gabriela M.. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina; ArgentinaFil: Acosta, M. Eugenia. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina; ArgentinaFil: Martinez, C. Valeria. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina; ArgentinaFil: Rojas, Alejandro. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina; ArgentinaFil: Muñoz, M. Lorena. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina; ArgentinaFil: Ploper, Leonardo Daniel. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina; Argentin

    Impact of an intermittent and localized cooling intervention on skin temperature, sleep quality and energy expenditure in free-living, young, healthy adults

    Get PDF
    Where people live and work together it is not always possible to modify the ambient temperature; ways must therefore be found that allow individuals to feel thermally comfortable in such settings. The Embr Wave (R) is a wrist-worn device marketed as a 'personal thermostat' that can apply a local cooling stimulus to the skin. The aim of the present study was to determine the effect of an intermittent mild cold stimulus of 25 degrees C for 15-20 s every 5 min over 3.5 days under free-living conditions on 1) skin temperature, 2) perception of skin temperature, 3) sleep quality and 4) resting energy expenditure (REE) in young, healthy adults. Ten subjects wore the device for 3.5 consecutive days. This intervention reduced distal skin temperature after correcting for personal ambient temperature (P = 0.051). Thus, this intermittent mild cold regime can reduce distal skin temperature, and wearing it under free-living conditions for 3.5 days does not seem to impair the perception of skin temperature and sleep quality or modify REE.The study was funded by the Spanish Ministry of Economy and Competitiveness via the Fondo de Investigacion Sanitaria del Instituto de Salud Carlos III (PI13/01393 and CB16/10/00239) and PTA 12264-I, Retos de la Sociedad (DEP2016-79512-R), and European Regional Development Funds (ERDF). Other funders included the Spanish Ministry of Education (FPU 16/05159, 15/04059 and 19/02326), the Fundacion Iberoamericana de Nutricion (FINUT), the Redes Tematicas De Investigacion Cooperativa RETIC (Red SAMID RD16/0022), the AstraZeneca Health Care Foundation, the University of Granada Plan Propio de Investigacion 2016 (Excellence actions: Unit of Excellence on Exercise, Nutrition and Health [UCEENS]), and by the Junta de Andalucia, Consejeria de Conocimiento, Investigacion y Universidades (ERDF, SOMM17/6107/UGR). AMT was supported by Seneca Foundation through grant 19899/GERM/15 and the Ministry of Science Innovation and Universities RTI2018-093528-B-I0, as well as DJP (MINECO; RYC-2014-16938). BMT was supported by an individual postdoctoral grant from the Fundacion Alfonso Martin Escudero. We thank Dr. Matt Smith of Embr Labs Inc. for configuring the Embr Wave (R) devices used in this experiment

    Dryland cropping systems influence the microbial biomass and enzyme activities in a semiarid sandy soil

    Get PDF
    Indicators of soil quality, such as microbial biomass C and N (MBC, MBN) and enzyme activities (EAs), involved in C, P, N, and S cycling, as affected by dryland cropping systems under conventional (ct) and no tillage (nt) practices were evaluated for 5 years. The soil is sandy loam with an average of 16.4% clay, 67.6% sand, and 0.65 g kg−1 OM at 0– 10 cm. The crops evaluated were rotations of grain sorghum (Sorghum bicolor L.) or forage sorghum (also called haygrazer), cotton (Gossypium hirsutum), and winter rye (Secale cereale): grain sorghum–cotton (Srg–Ct), cotton–winter rye– sorghum (Ct–Rye–Srg), and forage sorghum–winter rye (Srf– Rye). The tillage treatments did not affect soil MB and EAs of C cycling (i.e., β-glucosidase, β-glucosaminidase, α- galactosidase), P cycling (alkaline phosphatase, phosphodiesterase), and S cycling (arylsulfatase)—except for separation due to tillage for Srf–Rye and Ct–Rye–Srg observed in PCA plots when all EAs were evaluated together. After 3 years, rotations with a winter cover crop history (Ct–Rye–Srg and Srf–Rye) enhanced soil MBN (up to 63%) and EAs (21-37%) compared to Srg–Ct. After 5 years, Srg–Ct and Ct–Rye–Srg showed similar soil MBC, MBN, EAs, total carbon (TC), and organic carbon (OC). A comparison of Srg–Ct plots with nearby continuous cotton (Ct–Ct) research plots in the same soil revealed that it took 5 years to detect higher TC (12%), MBC (38%), and EAs (32–36%, depending on the enzyme) under Srg–Ct. The significant improvements in MB and EAs found, as affected by dryland cropping systems with a history of winter cover crops and/or higher biomass return crops than cotton, can represent changes in soil OM, nutrient cycling, and C sequestration for sandy soils in the semiarid Texas High Plains region. It is significant that these soil changes occurred despite summer crop failure (2003 and 2006) and lack of winter cover crops (2006) due to lack of precipitation in certain years

    Micromorphological and Chemical Approaches to Understand Changes in Ecological Functions of Metal-Impacted Soils under Various Land Uses

    Get PDF
    We investigated the changes in faunal activities as measures of the ecological functions of soils impacted by potentially toxic metals (PTMs) under urban, industrial, agricultural, and natural uses. Concentrations and distributions of Zn, Cd, Pb, Cu, Mn, and Fe were estimated by sequential chemical extractions, while relicts and present faunal activities were studied by micromorphological analyses. Urban and natural lands were contaminated with Pb, Cd, and Zn. Microarthropods and fungi are observed to be active in the litter decomposition in natural, agricultural and urban lands which indicates that total concentration of PTMs in soils is not a good indicator to evaluate the limitations of PTMs to fauna activity. Metals immobilization on carbonates and Fe/Mn oxides, and fertilizations reduced the negative effects of metals on faunal activity. Micromorphological analyses showed the impacts of metal on soil ecological functions in industrial site, where the surface soils are devoid of any evidence of faunal activity; likely due to high proportion of Pb and Zn in organic components. Therefore, the impacts of metals in soil fauna activities, hence ecological functions of soils, are best evaluated by the knowledge of metal partitioning on solid phases in combination with observations of fauna activities using micromorphological techniques

    Microbiology of wind-eroded sediments: current knowledge and future research directions

    Get PDF
    Wind erosion is a threat to the sustainability and productivity of soils that takes place at local, regional, and global scales. Current estimates of the cost of wind erosion have not included the costs associated with the loss of soil biodiversity and reduced ecosystem functions. Microorganisms carried in dust are responsible for numerous critical ecosystem processes including biogeochemical cycling of nutrients, carbon storage, soil aggregation, and transformation of toxic compounds in the source soil. Currently, much of the information on microbial transport in dust has been collected at continental scales, with no comprehensive review regarding the microbial communities, particularly those associated with agricultural systems, redistributed by wind erosion processes at smaller scales including regional or field scales. Agricultural systems can contribute significantly to atmospheric dust loading and loss or redistribution of soil microorganisms are impacted in three interactive ways: (1) differential loss of certain microbial taxa depending on particle size and wind conditions, (2) through the destabilization of soil aggregates and reduction of available surfaces, and (3) through the reduction of organic matter and substrates for the remaining community. The purpose of this review is to provide an overview of dust sampling technologies, methods for microbial extraction from dust, and how abiotic, environmental, and management factors influence the dust microbiome within and among agroecosystems. The review also offers a perspective on important potential future research avenues with a focus on agroecosystems and the inclusion of the fungal component

    The Mediating Role of Brown Fat and Skeletal Muscle Measured by 18F-Fluorodeoxyglucose in the Thermoregulatory System in Young Adults

    Get PDF
    The authors would like to thank all the participants who took part in this investigation. This study is part of a PhD thesis conducted in the Biomedicine Doctoral Studies of the University of Granada, Spain. We are grateful to Alberto Quesada-Aranda for helping with the development of the Temperatus software (free trial at http://profith.ugr.es/ temperatus?lang=en). We are grateful to Ms Carmen Sainz-Quinn for assistance with English-language editingObjective: This study aimed to examine whether brown adipose tissue (BAT) or skeletal muscle activity mediates the relationship between personal level of environmental temperature (Personal-ET) and wrist skin temperature (WT). Moreover, we examined whether BAT and skeletal muscle have a mediating role between Personal-ET and WT (as a proxy of peripheral vasoconstriction/vasodilation). Methods: The levels of BAT were quantified by cold-induced 18F-fluorodeoxyglucose–positron emission tomography/computed tomography scan and measured the Personal-ET and WT by using iButtons (Maxim Integrated, Dallas, Texas) in 75 participants (74.6% women). Results: The study found that BAT volume and metabolic activity played a positive and significant role (up to 25.4%) in the association between Personal-ET and WT. In addition, at the coldest temperatures, the participants with lower levels of WT (inducing higher peripheral vasoconstriction) had higher levels of BAT outcomes, whereas in warm temperatures, participants with higher levels of WT (inducing higher peripheral vasodilation) had lower levels of BAT outcomes. The study did not find any mediating role of skeletal muscle activity. Conclusions: BAT volume and metabolic activity play a role in the relationship between Personal-ET and WT. Moreover, the data suggest that there are two distinct phenotypes: individuals who respond better to the cold, both through nonshivering thermogenesis and peripheral vasoconstriction, and individuals who respond better to the heat.This study was supported by the Spanish Ministry of Economy and Competitiveness, Fondo de Investigación Sanitaria del Instituto de Salud Carlos III (PI13/01393), Retos de la Sociedad (DEP2016‐79512‐R), and Fondos Estructurales de la Unión Europea (FEDER); by the Spanish Ministry of Education (FPU 13/04365); by the Fundación Iberoamericana de Nutrición; by the Redes Temáticas de Investigación Cooperativa RETIC (Red SAMID RD16/0022); by AstraZeneca HealthCare Foundation; by the University of Granada, Plan Propio de Investigación 2016, Excellence actions: Units of Excellence; Unit of Excellence on Exercise and Health (UCEES); and by the Junta de Andalucía, Consejería de Conocimiento, Investigación y Universidades and European Regional Development Fund (ERDF), ref. SOMM17/6107/UGR, Programa Contratos‐Puente. MAR is supported by a predoctoral research grant from University Jaume I (PREDOC/2015/13). AMN was supported by the Ministry of Economy and Competitiveness, the Instituto de Salud Carlos III through the Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CB16/10/00239), and grant 19899/GERM/15 (cofinanced by FEDER)

    Surface (S) Layer Proteins of Lactobacillus acidophilus Block Virus Infection via DC-SIGN Interaction

    Get PDF
    Alphaviruses and flaviviruses are important human pathogens that include Chikungunya virus (CHIKV), Dengue virus (DENV), and Zika virus (ZIKV), which can cause diseases in humans ranging from arthralgia to hemorrhagic fevers and microcephaly. It was previously shown that treatment with surface layer (S-layer) protein, present on the bacterial cell-envelope of Lactobacillus acidophilus, is able to inhibit viral and bacterial infections by blocking the pathogen’s interaction with DC-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN), a trans-membrane protein that is a C-type calcium-dependent lectin. DC-SIGN is known to act as an attachment factor for several viruses including alphaviruses and flaviviruses. In the present study, we used alphaviruses as a model system to dissect the mechanism of S-layer inhibition. We first evaluated the protective effect of S-layer using 3T3 cells, either wild type or stably expressing DC-SIGN, and infecting with the alphaviruses Semliki Forest virus (SFV) and CHIKV and the flaviviruses ZIKV and DENV. DC-SIGN expression significantly enhanced infection by all four viruses. Treatment of the cells with S-layer prior to infection decreased infectivity of all viruses only in cells expressing DC-SIGN. In vitro ELISA experiments showed a direct interaction between S-layer and DC-SIGN; however, confocal microscopy and flow cytometry demonstrated that S-layer binding to the cells was independent of DC-SIGN expression. S-layer protein prevented SFV binding and internalization in DC-SIGN-expressing cells but had no effect on virus binding to DC-SIGN-negative cells. Inhibition of virus binding occurred in a time-dependent manner, with a significant reduction of infection requiring at least a 30-min pre-incubation of S-layer with DC-SIGN-expressing cells. These results suggest that S-layer has a different mechanism of action compared to mannan, a common DC-SIGN-binding compound that has an immediate effect in blocking viral infection. This difference could reflect slower kinetics of S-layer binding to the DC-SIGN present at the plasma membrane (PM). Alternatively, the S-layer/DC-SIGN interaction may trigger the activation of signaling pathways that are required for the inhibition of viral infection. Together our results add important information relevant to the potential use of L. acidophilus S-layer protein as an antiviral therapy
    corecore