447 research outputs found

    Initializing an unmodulated spin chain to operate as a high quality quantum data-bus

    Full text link
    We study the quality of state and entanglement transmission through quantum channels described by spin chains varying both the system parameters and the initial state of the channel. We consider a vast class of one-dimensional many-body models which contains some of the most relevant experimental realizations of quantum data-buses. In particular, we consider spin-1/2 XY and XXZ model with open boundary conditions. Our results show a significant difference between free-fermionic (non-interacting) systems (XY) and interacting ones (XXZ), where in the former case initialization can be exploited for improving the entanglement distribution, while in the latter case it also determines the quality of state transmission. In fact, we find that in non interacting systems the exchange with fermions in the initial state of the chain always has a destructive effect, and we prove that it can be completely removed in the isotropic XX model by initializing the chain in a ferromagnetic state. On the other hand, in interacting systems constructive effects can arise by scattering between hopping fermions and a proper initialization procedure. Remarkably our results are the first example in which state and entanglement transmission show maxima at different points as the interactions and initializations of spin chain channels are varied.Comment: 10 pages, 7 figure

    Low-control and robust quantum refrigerator and applications with electronic spins in diamond

    Get PDF
    We propose a general protocol for low-control refrigeration and thermometry of thermal qubits, which can be implemented using electronic spins in diamond. The refrigeration is implemented by a probe, consisting of a network of interacting spins. The protocol involves two operations: (i) free evolution of the probe; and (ii) a swap gate between one spin in the probe and the thermal qubit we wish to cool. We show that if the initial state of the probe falls within a suitable range, and the free evolution of the probe is both unital and conserves the excitation in the zz-direction, then the cooling protocol will always succeed, with an efficiency that depends on the rate of spin dephasing and the swap gate fidelity. Furthermore, measuring the probe after it has cooled many qubits provides an estimate of their temperature. We provide a specific example where the probe is a Heisenberg spin chain, and suggest a physical implementation using electronic spins in diamond. Here the probe is constituted of nitrogen vacancy (NV) centers, while the thermal qubits are dark spins. By using a novel pulse sequence, a chain of NV centers can be made to evolve according to a Heisenberg Hamiltonian. This proposal allows for a range of applications, such as NV-based nuclear magnetic resonance of photosensitive molecules kept in a dark spot on a sample, and it opens up possibilities for the study of quantum thermodynamics, environment-assisted sensing, and many-body physics

    Communication-Efficient Zeroth-Order Distributed Online Optimization: Algorithm, Theory, and Applications

    Full text link
    This paper focuses on a multi-agent zeroth-order online optimization problem in a federated learning setting for target tracking. The agents only sense their current distances to their targets and aim to maintain a minimum safe distance from each other to prevent collisions. The coordination among the agents and dissemination of collision-prevention information is managed by a central server using the federated learning paradigm. The proposed formulation leads to an instance of distributed online nonconvex optimization problem that is solved via a group of communication-constrained agents. To deal with the communication limitations of the agents, an error feedback-based compression scheme is utilized for agent-to-server communication. The proposed algorithm is analyzed theoretically for the general class of distributed online nonconvex optimization problems. We provide non-asymptotic convergence rates that show the dominant term is independent of the characteristics of the compression scheme. Our theoretical results feature a new approach that employs significantly more relaxed assumptions in comparison to standard literature. The performance of the proposed solution is further analyzed numerically in terms of tracking errors and collisions between agents in two relevant applications.Comment: 21 pages, 5 figures, and this paper has been accepted by IEEE Acces

    Voltage Quality Improvement in Islanded Microgrids Supplying Nonlinear Loads

    Get PDF

    The size-dependent electromechanical instability of double-sided and paddle-type actuators in centrifugal and Casimir force fields

    Get PDF
    The present research is devoted to theoretical study of the pull-in performance of double-sided and paddle-type NEMS actuators fabricated from cylindrical nanowire operating in the Casimir regime and in the presence of the centrifugal force. D'Alembert's principle was used to transform the angular velocity into an equivalent static, centrifugal force. Using the couple stress theory, the constitutive equations of the actuators were derived. The equivalent boundary condition technique was applied to obtain the governing equation of the paddle-type actuator. Three distinct approaches, the Duan-Adomian Method (DAM), Finite Difference Method (FDM), and Lumped Parameter Model (LPM), were applied to solve the equation of motion of these two actuators. This study demonstrates the influence of various parameters, i.e., the Casimir force, geometric characteristics, and the angular speed, on the pull-in performance. (C) 2017 Sharif University of Technology. All rights reserved

    Statistical Mechanics of maximal independent sets

    Full text link
    The graph theoretic concept of maximal independent set arises in several practical problems in computer science as well as in game theory. A maximal independent set is defined by the set of occupied nodes that satisfy some packing and covering constraints. It is known that finding minimum and maximum-density maximal independent sets are hard optimization problems. In this paper, we use cavity method of statistical physics and Monte Carlo simulations to study the corresponding constraint satisfaction problem on random graphs. We obtain the entropy of maximal independent sets within the replica symmetric and one-step replica symmetry breaking frameworks, shedding light on the metric structure of the landscape of solutions and suggesting a class of possible algorithms. This is of particular relevance for the application to the study of strategic interactions in social and economic networks, where maximal independent sets correspond to pure Nash equilibria of a graphical game of public goods allocation

    Preliminary Evidence of Acceptance and Commitment Therapy for Death Anxiety in Iranian Clients Diagnosed with OCD

    Get PDF
    This study investigated the effectiveness of Acceptance and Commitment Therapy (ACT) on death anxiety and obsessive-compulsive disorder (OCD) with eight adult females in Iran. The ACT protocol was conducted in 8 weekly solo sessions (45 minutes each). The results were analyzed by visual analysis method and improvement percentage. ACT resulted in decreases in death anxiety (60-80%) and obsessive-compulsive symptoms (51-60%), thereby indicating promise for ACT as a treatment for OCD and death anxiety

    In vivo regulation of the heme oxygenase-1 gene in humanized transgenic mice

    Get PDF
    Heme oxygenase-1 (HO-1) catalyzes the rate-limiting step in heme degradation, producing equimolar amounts of carbon monoxide, iron, and biliverdin. Induction of HO-1 is a beneficial response to tissue injury in diverse animal models of diseases including acute kidney injury. In vitro analysis has shown that the human HO-1 gene is transcriptionally regulated by changes in chromatin conformation, but whether such control occurs in vivo is not known. To enable such an analysis, we generated transgenic mice, harboring an 87-kb bacterial artificial chromosome expressing human HO-1 mRNA and protein and bred these mice with HO-1 knockout mice to generate humanized BAC transgenic mice. This successfully rescued the phenotype of the knockout mice including reduced birth rates, tissue iron overload, splenomegaly, anemia, leukocytosis, dendritic cell abnormalities, and survival after acute kidney injury induced by rhabdomyolysis or cisplatin nephrotoxicity. Transcription factors such as USF1/2, JunB, Sp1, and CTCF were found to associate with regulatory regions of the human HO-1 gene in the kidney following rhabdomyolysis. Chromosome conformation capture and ChIP-loop assays confirmed this in the formation of chromatin looping in vivo. Thus, these bacterial artificial chromosome humanized HO-1 mice are a valuable model to study the human HO-1 gene, providing insight to the in vivo architecture of the gene in acute kidney injury and other diseases
    • …
    corecore