373 research outputs found

    Behaviour change interventions to influence antimicrobial prescribing: a cross-sectional analysis of reports from UK state-of-the-art scientific conferences

    Get PDF
    Background To improve the quality of antimicrobial stewardship (AMS) interventions the application of behavioural sciences supported by multidisciplinary collaboration has been recommended. We analysed major UK scientific research conferences to investigate AMS behaviour change intervention reporting. Methods Leading UK 2015 scientific conference abstracts for 30 clinical specialties were identified and interrogated. All AMS and/or antimicrobial resistance(AMR) abstracts were identified using validated search criteria. Abstracts were independently reviewed by four researchers with reported behavioural interventions classified using a behaviour change taxonomy. Results Conferences ran for 110 days with >57,000 delegates. 311/12,313(2.5%) AMS-AMR abstracts (oral and poster) were identified. 118/311(40%) were presented at the UKā€™s infectious diseases/microbiology conference. 56/311(18%) AMS-AMR abstracts described behaviour change interventions. These were identified across 12/30(40%) conferences. The commonest abstract reporting behaviour change interventions were quality improvement projects [44/56 (79%)]. In total 71 unique behaviour change functions were identified. Policy categories; ā€œguidelinesā€ (16/71) and ā€œservice provisionā€ (11/71) were the most frequently reported. Intervention functions; ā€œeducationā€ (6/71), ā€œpersuasionā€ (7/71), and ā€œenablementā€ (9/71) were also common. Only infection and primary care conferences reported studies that contained multiple behaviour change interventions. The remaining 10 specialties tended to report a narrow range of interventions focusing on ā€œguidelinesā€ and ā€œenablementā€. Conclusion Despite the benefits of behaviour change interventions on antimicrobial prescribing, very few AMS-AMR studies reported implementing them in 2015. AMS interventions must focus on promoting behaviour change towards antimicrobial prescribing. Greater focus must be placed on non-infection specialties to engage with the issue of behaviour change towards antimicrobial use

    Magnetic Mineral Populations in Lower Oceanic Crustal Gabbros (Atlantis Bank, SW Indian Ridge): Implications for Marine Magnetic Anomalies

    Get PDF
    To learn more about magnetic properties of the lower ocean crust and its contributions to marine magnetic anomalies, gabbro samples were collected from International Ocean Discovery Program Hole U1473A at Atlantis Bank on the Southwest Indian Ridge. Detailed magnetic property work links certain magnetic behaviors and domain states to specific magnetic mineral populations. Measurements on whole rocks and mineral separates included magnetic hysteresis, firstā€order reversal curves, lowā€temperature remanence measurements, thermomagnetic analysis, and magnetic force microscopy. Characteristics of the thermomagnetic data indicate that the upper ~500 m of the hole has undergone hydrothermal alteration. The thermomagnetic and natural remanent magnetization data are consistent with earlier observations from Hole 735B that show remanence arises from lowā€Ti magnetite and that natural remanent magnetizations are up to 25 A māˆ’1 in evolved Feā€Ti oxide gabbros, but are mostly \u3c1 A māˆ’1. Magnetite is present in at least three forms. Primary magnetite is associated with coarseā€grained oxides that are more frequent in the upper part of the hole. This magnetic population is linked to dominantly ā€œpseudoā€singleā€domainā€ behavior that arises from fineā€scale lamellar intergrowths within the large oxides. Deeper in the hole the magnetic signal is more commonly dominated by an interacting singleā€domain assemblage most likely found along crystal discontinuities in olivine and/or pyroxene. A third contribution is from noninteracting singleā€domain inclusions within plagioclase. Because the concentration of the highly magnetic, oxideā€rich gabbros is greatest toward the surface, the signal from coarse oxides will likely dominate the nearā€bottom magnetic anomaly signal at Atlantis Bank

    Temporal and spatial variability in the composition of lavas exposed along the Western Blanco Transform Fault

    Get PDF
    Author Posting. Ā© American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 6 (2005): Q11009, doi:10.1029/2005GC001026.The northern scarp of the western Blanco Transform (BT) fault zone provides a "tectonic window" into crust generated at an intermediate-rate spreading center, exposing a ~2000 m vertical section of lavas and dikes. The lava unit was sampled by submersible during the Blancovin dive program in 1995, recovering a total of 61 samples over vertical distances of ~1000 m and a lateral extent of ~13 km. Major elements analyses of 40 whole rock samples exhibit typical tholeiitic fractionation trends of increasing FeO*, Na2O, and TiO2 and decreasing Al2O3 and CaO with decreasing MgO. The lava suite shows a considerable range in extent of crystallization, including primitive samples (Mg# 64) and evolved FeTi basalts (FeO>12%;TiO2>2%). Based on rare earth element and trace element data, all of the lavas are incompatible-element depleted normal mid-ocean ridge basalts (N-MORB;La/SmN<1). The geochemical systematics suggest that the lavas were derived from a slightly heterogeneous mantle source, and crystallization occurred in a magmatic regime of relatively low magma flux and/or high cooling rate, consistent with magmatic processes occurring along the present-day southern Cleft Segment. The BT scarp reveals the oceanic crust in two-dimensional space, allowing us to explore temporal and spatial relationships in the horizontal and vertical directions. As a whole, the data do not appear to form regular spatial trends; rather, primitive lavas tend to cluster shallower and toward the center of the study area, while more evolved lavas are present deeper and toward the west and east. Considered within a model for construction of the upper crust, these findings suggest that the upper lavas along the BT scarp may have been emplaced off-axis, either by extensive off-axis flow or off-axis eruption, while the lower lavas represent axial flows that have subsided with time. A calculation based on an isochron model for construction of the upper crust suggests that the Cleft Segment requires at least ~50 ka to build the lower extrusive section, consistent to first order with independent estimates for the construction of intermediate-spreading rate crust.This work was supported by the US National Science Foundation (OCE 02- 22154 to E.K. and J.K. and OCE 9400623 to M.T.)

    Autonomous and remotely operated vehicle technology for hydrothermal vent discovery, exploration, and sampling

    Get PDF
    Author Posting. Ā© Oceanography Society, 2007. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 20, 1 (2007): 152-161.Autonomous and remotely operated underwater vehicles play complementary roles in the discovery, exploration, and detailed study of hydrothermal vents. Beginning with clues provided by towed or lowered instruments, autonomous underwater vehicles (AUVs) can localize and make preliminary photographic surveys of vent fields. In addition to finding and photographing such sites, AUVs excel at providing regional context through fine-scale bathymetric and magnetic field mapping. Remotely operated vehicles (ROVs) enable close-up inspection, photomosaicking, and tasks involving manipulation of samples and instruments. Increasingly, ROVs are used to conduct in situ seafloor experiments. ROVs can also be used for fine-scale bathymetric mapping with excellent results, although AUVs are usually more efficient in such tasks

    The Cleft revealed: geologic, magnetic, and morphologic evidence for construction of upper oceanic crust along the southern Juan de Fuca Ridge

    Get PDF
    Author Posting. Ā© American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 7 (2006): Q04003, doi:10.1029/2005GC001038.The geology and structure of the Cleft Segment of the Southern Juan de Fuca Ridge (JdFR) have been examined using high-resolution mapping systems, observations by remotely operated vehicle (ROV), ROV-mounted magnetometer, and the geochemical analysis of recovered lavas. Bathymetric mapping using multibeam (EM300) coupled with in situ observations that focused on near-axis and flank regions provides a detailed picture of 0 to 400 ka upper crust created at the southern terminus of the JdFR. A total of 53 rock cores and 276 precisely located rock or glass samples were collected during three cruises that included sixteen ROV dives. Our observations of the seafloor during these dives suggest that many of the unfaulted and extensive lava flows that comprise and/or cap the prominent ridges that flank the axial valley emanate from ridge parallel faults and fissures that formed in the highly tectonized zone that forms the walls of the axial valley. The geochemically evolved and heterogeneous nature of these near-axis and flank eruptions is consistent with an origin within the cooler distal edges of a crustal magma chamber or mush zone. In contrast, the most recent axial eruptions are more primitive (higher MgO), chemically homogeneous lobate, sheet, and massive flows that generate a distinct magnetic high over the axial valley. We suggest that the syntectonic capping volcanics observed off-axis were erupted from near-axis and flank fissures and created a thickened extrusive layer as suggested by the magnetic and seismic data. This model suggests that many of the lavas that comprise the elevated ridges that bound the axial valley of the Cleft Segment were erupted during the collapse of a magmatic cycle not during the robust phase that established a new magmatic cycle.This research has been partially supported by a NSF grant to M. Perfit (OCE-0221541). M. Tivey acknowledges support from WHOIā€™s Mellon grant for Independent Study. Support for D. Stakes, T. Ramirez, D. Caress, and N. Maher and for the entire field program was provided by funds to MBARI from the Lucille and David Packard Foundation

    Mid-ocean ridge exploration with an autonomous underwater vehicle

    Get PDF
    Author Posting. Ā© Oceanography Society, 2007. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 20, 4 (2007): 52-61.Human-occupied submersibles, towed vehicles, and tethered remotely operated vehicles (ROVs) have traditionally been used to study the deep seafloor. In recent years, however, autonomous underwater vehicles (AUVs) have begun to replace these other vehicles for mapping and survey missions. AUVs complement the capabilities of these pre-existing systems, offering superior mapping capabilities, improved logistics, and better utilization of the surface support vessel by allowing other tasks such as submersible operations, ROV work, CTD stations, or multibeam surveys to be performed while the AUV does its work. AUVs are particularly well suited to systematic preplanned surveys using sonars, in situ chemical sensors, and cameras in the rugged deep-sea terrain that has been the focus of numerous scientific expeditions (e.g., those to mid-ocean ridges and ocean margin settings). The Autonomous Benthic Explorer (ABE) is an example of an AUV that has been used for over 20 cruises sponsored by the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA) Office of Ocean Exploration (OE), and international and private sources. This paper summarizes NOAA OE-sponsored cruises made to date using ABE

    Rescue of long-tail data from the ocean bottom to the Moon: IEDA Data Rescue Mini-Awards

    Get PDF
    Over the course of a scientific career, a large fraction of the data collected by scientific investigators turns into data at risk of becoming inaccessible to future science. Although a part of the investigatorsā€™ data is made available in manuscripts and databases, other data may remain unpublished, non-digital, on degrading or near obsolete digital media, or inadequately documented for reuse. In 2013, Integrated Earth Data Applications (IEDA) provided data rescue mini-awards to three Earth science investigators. IEDAā€™s user communities in geochemistry, petrology, geochronology, and marine geophysics collect long-tail data, defined as data produced by individuals and small teams for specific projects, tending to be of small volume and initially for use only by these teams, thus being less likely to be easily transferred or reused. Long-tail data are at greater risk of omission from the scientific record. The awarded projects topics were (1) Geochemical and Geochronological data on volcanic rocks from the Fiji, Izu-Bonin-Mariana arc, and Endeavor segments of the global mid-ocean ridge, (2) High-Resolution, Near-bottom Magnetic Field Data, and (3) Geochemistry of Lunar Glasses. IEDA worked closely with the awardees to create a plan for the data rescue, resulting in the registration of hundreds of samples and the entry of dozens of data and documentation files into IEDA data systems. The data were made openly accessible and citable by assigning persistent identifiers for samples and files. The mini-award program proved that a relatively small incentive combined with data facility guidance can motivate investigators to accomplish significant data rescue

    Mylonitic deformation at the Kane oceanic core complex : implications for the rheological behavior of oceanic detachment faults

    Get PDF
    Author Posting. Ā© American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 14 (2013): 3085ā€“3108, doi:10.1002/ggge.20184.The depth extent, strength, and composition of oceanic detachment faults remain poorly understood because the grade of deformation-related fabrics varies widely among sampled oceanic core complexes (OCCs). We address this issue by analyzing fault rocks collected from the Kane oceanic core complex at 23Ā°30ā€²N on the Mid-Atlantic Ridge. A portion of the sample suite was collected from a younger fault scarp that cuts the detachment surface and exposes the interior of the most prominent dome. The style of deformation was assessed as a function of proximity to the detachment surface, revealing a āˆ¼450 m thick zone of high-temperature mylonitization overprinted by a āˆ¼200 m thick zone of brittle deformation. Geothermometry of deformed gabbros demonstrates that crystal-plastic deformation occurred at temperatures >700Ā°C. Analysis of the morphology of the complex in conjunction with recent thermochronology suggests that deformation initiated at depths of āˆ¼7 km. Thus we suggest the detachment system extended into or below the brittle-plastic transition (BPT). Microstructural evidence suggests that gabbros and peridotites with high-temperature fabrics were dominantly deforming by dislocation-accommodated processes and diffusion creep. Recrystallized grain size piezometry yields differential stresses consistent with those predicted by dry-plagioclase flow laws. The temperature and stress at the BPT determined from laboratory-derived constitutive models agree well with the lowest temperatures and highest stresses estimated from gabbro mylonites. We suggest that the variation in abundance of mylonites among oceanic core complexes can be explained by variation in the depth of the BPT, which depends to a first order on the thermal structure and water content of newly forming oceanic lithosphere.Knorr Cruise 180-2 data and sample acquisition was supported by NSF grant 0118445.2014-02-2

    Tawney and the third way

    Get PDF
    From the 1920s to the 1950s R. H. Tawney was the most influential socialist thinker in Britain. He articulated an ethical socialism at odds with powerful statist and mechanistic traditions in British socialist thinking. Tawney's work is thus an important antecedent to third way thinking. Tawney's religiously-based critique of the morality of capitalism was combined with a concern for detailed institutional reform, challenging simple dichotomies between public and private ownership. He began a debate about democratizing the enterprise and corporate governance though his efforts fell on stony ground. Conversely, Tawney's moralism informed a whole-hearted condemnation of market forces in tension with both his concern with institutional reform and modern third way thought. Unfortunately, he refused to engage seriously with emergent welfare economics which for many social democrats promised a more nuanced understanding of the limits of market forces. Tawney's legacy is a complex one, whose various elements form a vital part of the intellectual background to current third way thinking
    • ā€¦
    corecore