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Magnetic Mineral Populations in Lower Oceanic Crustal
Gabbros (Atlantis Bank, SW Indian Ridge): Implications
for Marine Magnetic Anomalies
J. A. Bowles1 , A. Morris2 , M. A. Tivey3 , and I. Lascu4

1Department of Geosciences, University of Wisconsin‐Milwaukee, Milwaukee,WI, USA, 2School of Geography, Earth and
Environmental Sciences, University of Plymouth, Plymouth, UK, 3Department of Geology and Geophysics, Woods Hole
Oceanographic Institution, Woods Hole, MA, USA, 4Department of Mineral Sciences, National Museum of Natural
History, Smithsonian Institution, Washington, DC, USA

Abstract To learn more about magnetic properties of the lower ocean crust and its contributions to
marine magnetic anomalies, gabbro samples were collected from International Ocean Discovery Program
Hole U1473A at Atlantis Bank on the Southwest Indian Ridge. Detailed magnetic property work links
certain magnetic behaviors and domain states to specific magnetic mineral populations. Measurements on
whole rocks and mineral separates included magnetic hysteresis, first‐order reversal curves,
low‐temperature remanence measurements, thermomagnetic analysis, and magnetic force microscopy.
Characteristics of the thermomagnetic data indicate that the upper ~500 m of the hole has undergone
hydrothermal alteration. The thermomagnetic and natural remanent magnetization data are consistent with
earlier observations from Hole 735B that show remanence arises from low‐Ti magnetite and that natural
remanent magnetizations are up to 25 A m−1 in evolved Fe‐Ti oxide gabbros, but are mostly <1 A m−1.
Magnetite is present in at least three forms. Primary magnetite is associated with coarse‐grained oxides
that are more frequent in the upper part of the hole. This magnetic population is linked to dominantly
“pseudo‐single‐domain” behavior that arises from fine‐scale lamellar intergrowths within the large oxides.
Deeper in the hole the magnetic signal is more commonly dominated by an interacting single‐domain
assemblage most likely found along crystal discontinuities in olivine and/or pyroxene. A third contribution
is from noninteracting single‐domain inclusions within plagioclase. Because the concentration of the highly
magnetic, oxide‐rich gabbros is greatest toward the surface, the signal from coarse oxides will likely
dominate the near‐bottom magnetic anomaly signal at Atlantis Bank.

Plain Language Summary Critical evidence documenting Earth's evolution has been provided
by measuring the magnetic field generated by a magnetized ocean crust. Most of this field comes from the
uppermost crust produced by seafloor volcanic eruptions. However, sometimes important contributions
come from the lower crust that is not commonly exposed on the seafloor. To better understand these lower
crustal contributions, rock samples were collected via ocean drilling at Atlantis Bank in the Indian Ocean.
Previous magnetic work on this type of rock has mostly been limited to measurements that provide an
average of all magnetic minerals present. In this study, we perform more detailed analyses and are able to
link certain magnetic behaviors with specific populations of the magnetic mineral magnetite. In one form,
magnetite is present in relatively large (tens of microns) oxide minerals with fine‐scale compositional
variations. Magnetite is also present as tiny particles enclosed within other minerals (plagioclase and
pyroxene and/or olivine). Because rock layers containing the large oxides are relatively close to the seafloor
at Atlantis Bank, and because they contain a large quantity of magnetite, they will contribute most strongly
to any magnetic field measurements made close to the seafloor.

1. Introduction/Background

Sea‐surface marine magnetic anomalies have provided critical evidence in the development of plate tectonic
theory (Heirtzler et al., 1968; Vine & Matthews, 1963), allowing for the reconstruction of mid‐ocean ridge
plate boundaries through time, and proving important in the development and refinement of the
Geomagnetic Polarity Time Scale (Cande & Kent, 1995; Pitman & Heirtzler, 1966). More recently,
near‐bottom magnetic data have provided more detailed information on geomagnetic field behavior (e.g.,
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Bowers et al., 2001; Gee et al., 2000; Granot et al., 2012; Sager et al., 1998; Tivey et al., 2006; Tominaga et al.,
2008) and local tectonic and hydrothermal processes (e.g., Caratori Tontini et al., 2016; Tivey et al., 2003;
Tivey & Johnson, 2002). A complete interpretation of these data requires understanding of the source layers,
magneticmineralogy, and stability of magnetization.When present, an extrusive layermay dominate the sig-
nal (Gee & Kent, 2007), but contributions from the lower crust remain important, especially when little to no
extrusive layer exists (e.g., Dick et al., 1991; Schulz et al., 1988; Tivey&Tucholke, 1998). Evenwhen the extru-
sive crust is present, an understanding of lower crustal magnetization is often required. For example, paleo-
magnetic poles can be determined by quantifying the phase shift of the sea‐surface anomaly (Schouten &
Cande, 1976). This technique assumes that polarity boundaries within the crust are vertical, an assumption
that is almost certainly violated by sloping boundaries in the extrusive crust due to accretionary processes
(Macdonald et al., 1983; Schouten &Denham, 1979; Tivey et al., 1998). A greater effect within the lower crust
may arise from inferred sloping boundaries due to cooling isotherms (Arkani‐Hamed, 1990; Cande & Kent,
1976; Dyment et al., 1994; Gee & Kent, 2007).

Characterizing the magnetic properties of the lower crust is therefore important, and existing data from the
lower oceanic crust are still limited to mostly bulk magnetic property observations. Here we present new
rock magnetic data on lower crustal samples from International Ocean Discovery Program Hole U1473A
that give a more detailed picture of links between the documented magnetic mineral populations and their
specific magnetic behaviors and properties.

1.1. Site Description

International Ocean Discovery Program Expedition 360 recovered lower crustal samples from the Atlantis
Bank oceanic core complex on the Southwest Indian Ridge (MacLeod et al., 2017b). Located ~100 km south
of the Southwest Indian Ridge spreading axis and ~10 km east of the Atlantis II Transform (32°42.36′S, 57°
16.69′E), the upper crust here has been removed via long‐lived detachment faulting, exposing the gabbroic
lower crust at the seafloor (Dick et al., 2000; Natland & Dick, 2001; Dick, Kvassnes, et al., 2019, Dick,
MacLeod, et al., 2019). Sea‐surface and near‐bottom marine magnetic anomalies are continuous across
Atlantis Bank (Allerton & Tivey, 2001; Dick et al., 1991). Combined with remanence data from Ocean
Drilling Program Hole 735B and several seabed drill sites, these anomalies have been used to model the
dip of the magnetic isochron away from the ridge axis (Allerton & Tivey, 2001). Hole U1473A was drilled
to 809‐m core composite depth below seafloor (CCSF) and is located 2.2 km north‐northeast of Hole 735B
(1,508 m deep) and 1.4 km north of Hole 1105A (148 m deep). It was drilled into the ~12 Myr, reversely mag-
netized crust of Chron C5r.3r (MacLeod et al., 2017b).

The gabbroic sequence at Atlantis Bank is interpreted to represent a period of robust magmatism. The gab-
bros are dominantly evolved adcumulates, residue of a highly fractionated mid‐ocean ridge basalt (Dick,
Kvassnes, et al., 2019). At U1473A, the recovered gabbros are mostly olivine gabbro, with lesser amounts
of gabbro and oxide‐bearing gabbros (Figure 1). The most oxide‐rich gabbros are thought to represent an
evolved interstitial melt compacted out of olivine gabbro cumulates (MacLeod et al., 2017b). In addition
to the gabbros, approximately 1.5% of the recovered section is felsic veins, possibly representing the final
stages of melt fractionation.

Based on shipboard hand‐sample and petrographic observations, the gabbros were placed in three different
categories for magnetic purposes (MacLeod et al., 2017a): (1) no visible oxides (gabbros and olivine gabbros),
(2) <5% oxides (disseminated oxide gabbros, oxide‐bearing gabbros, and oxide‐bearing olivine gabbros), and
(3) >5% oxides (oxide gabbros and olivine oxide gabbros). While groups 2 and 3 have significant concentra-
tions of visible coarse, primary magmatic oxides, many group 1 samples also likely contain primary oxides
that were not easily observed in hand sample.

A 600‐m‐thick crystal‐plastic shear zone at the top of Hole U1473A is consistent with an active detachment
fault during magmatic accretion of the lower crust. Extensive recrystallization is associated with this defor-
mation, and the entire recovered section shows evidence of pervasive but locally variable static hydrothermal
alteration (MacLeod et al., 2017a).

Challenging coring conditions were encountered at ~410 m CCSF, which corresponded to the top of an
~100‐m‐thick fault zone, the lowermost 37 m of which were drilled without coring (Figure 1). Three roller
cones were lost from one bit at 410 m CCSF, and attempts to retrieve them with a strong magnet may

10.1029/2019GC008847Geochemistry, Geophysics, Geosystems

BOWLES ET AL. 2 of 15



have re‐magnetized the bottom hole assembly of the drill string and/or the drill pipe. This depth corresponds
to a change in the nature of the low‐coercivity drilling overprint andmay have some influence on the natural
remanent magnetization characteristics (MacLeod et al., 2017a).

2. Lower Crustal Magnetization

Magnetic property data for oceanic gabbros come predominantly from ocean drilling in a handful of loca-
tions: the oceanic core complexes at Atlantis Bank on the Southwest Indian Ridge (Kikawa & Pariso, 1991;
Pariso & Johnson, 1993; Rao & Krishna, 2002; Shipboard Scientific Party, 1989, 1999) and Atlantis Massif
on the Mid‐Atlantic Ridge (MAR; Expedition 304/305 Scientists, 2006; Morris et al., 2009; Zhao &
Tominaga, 2009), two series of holes on the MAR near the Kane (Gee et al., 1997; Gee & Meurer, 2002)
and the 15°20′N fracture zones (Garcés & Gee, 2007; Kelemen et al., 2004), and in the Hess Deep rift valley
on the Cocos‐Nazca spreading center (Pariso et al., 1996). In addition to paleomagnetic directional behavior,
most of these studies report only bulk rock magnetic properties such as natural remanent magnetization
(NRM), median destructive field (MDF), median destructive temperature, and/or Curie temperature (Tc).

On average, the NRM of gabbros is less than that of basalts or dikes, although there is considerable variabil-
ity in both populations. Gee and Kent (2007) summarize NRMdata (their Table 2) and estimate an average of
~1 A m−1 as typical of oceanic gabbros, compared to ~5 A m−1 for basalts. With the exception of some Fe‐Ti
oxide‐rich gabbros, the dominant magnetic phase is low‐Ti magnetite.

Thismagnetite is present in at least three forms.Most gabbros appear to havemagnetite as fine‐grained, crys-
tallographically controlled inclusions in silicate grains, including plagioclase, pyroxene, and olivine (Davis,
1981; Gee&Meurer, 2002; Natland, 2002; Usui, 2013).Magnetite is also commonly found as aggregates along

Figure 1. Downhole variations in magnetic properties. (a) NRM. (b) Saturation magnetization. (c) Saturation remanent magnetization (MRS)/saturation magne-
tization (MS). (d) Relative abundance of FORC endmembers: blue circles = EM1 (noninteracting SD), red squares = EM2 (interacting SD), green diamonds =
EM3+ EM4 (PSD). (e) Median destructive field (MDF). (f) Median destructive temperature (MDT). (g) Curie temperature: dominant TC in red circles, secondary TC
in green diamonds. (h) Percent change in susceptibility after heating to 700 °C. Pink stars indicate samples where “hump” was observed in thermomagnetic
data. MDF for pass‐through data is limited to ≤60 mT, the maximum demagnetization step. MDT was calculated using only fraction of remanence present after
heating to 150 °C; all samples were subjected to low‐temperature demagnetization in liquid N prior to thermal demagnetization. Small black dots = shipboard
pass‐through data. Gray triangles = shipboard discrete samples. Red/blue/green symbols = rock magnetic samples (this study). All shipboard data are from
MacLeod et al. (2017a). Dominant lithology of the recovered core indicated in panel at the left (10‐m running average); blues are dominantly gabbros and olivine
gabbros, oranges and yellows are disseminated oxide and oxide‐bearing gabbros, and reds are oxide gabbros (from MacLeod et al., 2017a).
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fractures in olivine and pyroxene associated with alteration (Expedition 304/305 Scientists, 2006; Natland,
2002; Pariso & Johnson, 1993; Usui, 2013). Coarse‐grained, discrete, primary magnetite is often coarsely
intergrown with ilmenite and is most commonly found in more evolved Fe‐Ti oxide gabbros (Expedition
304/305 Scientists, 2006; Natland, 2002; Pariso & Johnson, 1993).

2.1. Lower Crustal Magnetization at Atlantis Bank

All three of these types of magnetite are found in the Atlantis Bank gabbros. As observed at Hole 735B (e.g.,
Kikawa & Pariso, 1991; Pariso & Johnson, 1993) and 1105A (Rao & Krishna, 2002), the top of Hole U1473A
has a higher proportion of oxide‐rich gabbros that (on average) are characterized by lower coercivities and
often slightly lower unblocking temperatures (MacLeod et al., 2017a). At Hole U1473A, there is a correlation
between visible oxide abundance and increasing NRM and susceptibility. Of the three gabbro lithology
groups defined above formagnetic purposes, group 1 (no visible oxides) has a geometricmeanNRM intensity
of 0.45 Am−1 (range 0.49mAm−1 to 9.0 Am−1), while group 3 (>5% oxides) has amean of 2.11 Am−1 (range
13.3 mAm−1 to 19.7 Am−1). There is a clear trend in the average NRM intensity with shipboard estimates of
oxide abundance, but there is a wide range within each group and they overlap considerably. This is likely
due to core heterogeneity and the necessarily approximate nature of the shipboard oxide abundance esti-
mates and lithologic unit assignments. There may also be some variation in the fraction of oxides that
are magnetic.

Based on Expedition 360 shipboard observations (MacLeod et al., 2017a) and on previous work at Hole 735B
(Natland, 2002), the oxide‐rich gabbros are dominated by primary, magmatic, coarse‐grained magnetite.
Average coercivity increases in the lower part of the hole, and this is accompanied by a slight increase in
unblocking temperature and a decrease in average intensity (Figures 1a, 1e, and 1f; MacLeod et al., 2017a).
This suggests that the magnetic carriers in the less magnetic rocks may be largely confined to silicate‐hosted,
exsolved magnetite and/or magnetite associated with olivine or pyroxene alteration (Kikawa & Pariso, 1991;
MacLeod et al., 2017a; Natland, 2002; Pariso & Johnson, 1993).

3. Methods

Fifty‐three unoriented samples for rock magnetic analysis were taken from the working‐half sections of the
cores and were subdivided into three splits for (1) alternating field (AF) demagnetization of NRM; (2) sus-
ceptibility as a function of temperature, χ(T); and (3) other rock magnetic work. At the University of
Wisconsin‐Milwaukee Paleomagnetic Laboratory, all remanence measurements were made on a 2G
Enterprises 755SRMS Superconducting Rock Magnetometer, and NRM was AF demagnetized using an
ASC D‐2000 AF Demagnetizer. Sample orientation in the demagnetizer was reversed at each demagnetiza-
tion step (+x/+y/+z versus −x/−y/−z) to detect any spurious ARM acquisition during demagnetization. To
assess acquisition of a gyroremanent magnetization, nine samples were additionally subjected to a triple
demagnetization scheme (Stephenson, 1993) starting at 30 mT, whereby the sample was measured after
demagnetization along all three x‐y‐z axes, then after demagnetization along the y axis, and again after
demagnetization along the x axis.

χ(T) was measured under flowing Ar on crushed splits using a Kappabridge MFK1‐FA susceptibility bridge
with CS4 furnace attachment. Curie temperatures (Tc) were estimated by finding the (negative) peak in the
first derivative of χ(T) (Petrovský & Kapička, 2006). Issues with the calibration of the temperature sensor
lead an underreporting of most temperatures in the range of themagnetite Tc by ~10–13 °C.We do not adjust
any temperatures reported here but discuss the implications for interpretation below.

Hysteresis loops, first‐order reversal curves (FORCs), and low‐temperature remanence measurements were
conducted at the Institute for Rock Magnetism at the University of Minnesota. Hysteresis was measured in
fields up to 1 T on a Princeton Measurements Corp., vibrating sample magnetometer. FORC data were col-
lected every 2 mT and were processed using FORCinel 3.07 (Harrison & Feinberg, 2008) with the
VARIFORC variable smoothing protocol (Egli, 2013). To quantify downhole variability in themagnetic com-
ponents, we conducted a principal component analysis of the FORCs (Harrison et al., 2018; Lascu et al.,
2015). Endmember selection was guided by a feasibility metrics algorithm, which defines an unmixing space
in which endmembers (EMs) are physically realistic (Harrison et al., 2018).
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Low‐temperature (<300 K) remanence data were collected on 19 of the samples using a Quantum Designs
Magnetic Property Measurement System. A 2.5‐T isothermal remanent magnetization was acquired at 300
K. The sample was then cycled to 10 K and back to 300 K. Samples were then field‐cooled (FC) in a 2.5‐T
field to 10 K and remanence was measured on warming. Finally, samples were cooled in zero field (ZFC)
and remanence was measured on warming.

To evaluate the contribution from silicate‐hosted oxides, six samples were crushed, and plagioclase and pyr-
oxene minerals were separated by hand. Hysteresis and FORC measurements were then repeated on aggre-
gates of these mineral separates. Mineral identification was tested via powder X‐ray diffraction (XRD) at
University of Wisconsin‐Milwaukee using a Bruker D8 Focus XRD system at room temperature (Cu Kα
radiation, 4 s per 0.01° 2θ, 2–60° range, Sol‐X energy dispersive detector). This confirmed that the plagioclase
separates were nearly pure, but that the pyroxene separate also contained significant amounts of olivine.

Finally, to assess the internal magnetic structure of the coarse magmatic oxides, three ~1 × 1‐cm‐thick sec-
tions were prepared for magnetic force microscopy (MFM) by polishing, finishing with a colloidal silica pol-
ish. The work was carried out on an AsylumResearchMFP3D, equipped with a heated stage. Sample surface
topography (height) was collected in tapping mode, and the magnetic information (phase) was collected
with the MFM tip at 50‐nm elevation.

4. Results
4.1. NRM and Demagnetization Behavior

TheNRMof the oxide gabbros can be in excess of 20Am−1. However, themajority of the samples haveNRMs
≤~1 A m−1, in agreement with the compilation of Gee and Kent (2007). The NRM and MDF values are in
agreement with both the shipboard pass‐through and discrete sample data (Figures 1a and 1e). Although
there is considerable downhole variability, the general trend is of higher NRM and lower MDF above ~400
m CCSF.

During AF demagnetization, approximately 35% samples were characterized by an increase in remanence at
treatments above about 40–60 mT and a direction that does not decay to origin of a vector endpoint diagram
(Figure S1 in the supporting information). This behavior was mitigated when samples were subjected to the
triple‐demagnetization protocol and the three measurements were averaged (Figure S2). This is consistent
with acquisition of a gyroremanent magnetization during AF demagnetization, typical of single‐domain
(SD) particles (Stephenson, 1993). This behavior is only observed at depths >450 m CCSF, consistent with
the downhole increase in coercivity.

4.2. Hysteresis and FORC Data

Standard hysteresis parameters are reported in Table S1 in the supporting information, including saturation
magnetization (Ms), saturation remanent magnetization (Mrs), coercivity (Bc), and coercivity of remanence
(Bcr). On a standard Day plot (Day et al., 1977) of Mrs/Ms versus Bcr/Bc (Figure 2), all specimens plot in
the zones traditionally interpreted as near SD to pseudo‐single domain (PSD). With one exception, samples
with the most SD‐like hysteresis parameters (Mrs/Ms > 0.3) are found exclusively in the deepest parts of the
hole (>640 m CCSF; Figure 1c). These also tend to be the samples with the lowest volumetric abundance of
magnetic minerals (as reflected by Ms), while samples with higher Ms are less SD‐like (Figure 2).

FORC analysis provides a more nuanced assessment of the full range of magnetic populations and beha-
viors and suggests contributions from at least three magnetic components. A noninteracting SD component
is evidenced by a narrow ridge along Bu = 0, with coercivities in excess of 170 mT (Figures 3b and 3e). A
similar component is observed in the plagioclase separate (Figure 3e), as well as in plagioclase crystals from
MAR gabbros (Usui, 2013). This component may therefore be due to magnetic inclusions in the plagioclase,
but chains of SD particles observed in some of the coarse magmatic oxides (section 4.5 below) may
also contribute.

A second component has peak coercivities around 10–40 mT, with increased vertical spread in the Bu distri-
bution, but with contours that close on both sides of the peak (Figures 3c and 3f) suggesting a slightly inter-
acting SD component. This component dominates the olivine/pyroxene separates (Figure 3f) and is very
similar to that observed by Usui (2013) in olivine separates from MAR gabbros. It is also similar to an
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olivine crystal described byHarrison and Lascu (2014) as havingmagnetite decorations along dislocations. In
all of these examples, the peak of the distribution is shifted down toward negative Bu values, consistent with a
positive mean interaction field (Roberts et al., 2000). Modeling by Harrison and Lascu (2014) suggests that
this downward vertical shift arises from interacting clusters with locally anisotropic arrangement of
particles, whereas interactions arising from random packing create a negative mean interaction field,

Figure 2. (a) Day plot (Day et al., 1977) showing hysteresis properties as a function of MS. There is a trend toward more
SD‐like properties downhole, but in general samples with a greater abundance of magnetic minerals (reflected in
higher MS) are also less SD‐like. SD‐MDmixing curves for magnetite from Dunlop (2002). Letters refer to FORC diagram
panels in Figure 3. All data are from whole rocks, with the exception of blue squares e and f which are from mineral
separates. (b) MRS/MS as a function of MS further demonstrates that less SD‐like hysteresis behavior is correlated with a
greater abundance of magnetic minerals.

Figure 3. Example FORC results from whole‐rock and mineral separates. Results are consistent with at least three endmember populations: (b and e) noninteract-
ing SD, (c and f) interacting SD, and (a and d) “PSD.”
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producing an upward shift of the peak in the FORC diagram. Petrographic observations from Atlantis Bank
735B rocks show that magnetite can form along cleavage planes within pyroxene, and along dendritic cracks
or crystallographic partings in olivine (Natland, 2002; Pariso & Johnson, 1993). The observed FORC
distribution therefore likely reflects that clustering. We note that the dominant secondary phases at depths
>580 m CCSF include the products of olivine serpentinization, including magnetite. This depth also
approximately correlates with an increase in abundance of this FORC component (see below).

A third component only observed in the bulk rocks has peak coercivities of around 10–15 mT, with increased
vertical spread and the development of three “lobes” (Figures 3a, 3b, and 3d). There is some variability in the
exact FORC structure (e.g., Figure 3a versus 3d), and this may actually represent more than one component.
This FORC structure is often interpreted as PSD (Lascu et al., 2018; Roberts et al., 2000, 2017), but Harrison
and Lascu (2014) point out that there are striking similarities between FORCs measured on samples with
grains of “true” PSD size and those measured on strongly interacting SD samples. Samples of fine lamellar
magnetite‐ulvöspinel intergrowths (Evans et al., 2006) and clusters of biogenically derived SD particles (Miot
et al., 2014) both produce FORC diagrams very similar to what we observe in many of the bulk rocks. We
suggest that this FORC component arises from clusters of SD‐PSDmagnetite with small interparticle spacing
(Harrison & Lascu, 2014; perhaps associated with alteration) and/or some type of fine‐scale intergrowth in
the large oxides (see section 4.5 and Figures 6e and 6f). Rarely do samples show something approaching a
true multidomain (MD) signature, with a peak along or very close to the Bc = 0 axis.

FORC principal component analysis shows that 95% of the variability in the data set is explained by three
principal components. Thus, a four‐endmember (EM) unmixing was adopted, with EMs that are similar to
the components described above: a (mostly) noninteracting SD component (EM1), an interacting
single‐domain component (EM2), and two different “PSD” components (EM3 and EM4). By selecting phy-
sically realistic endmembers that tightly circumscribe the data, a significant number of data points fall out-
side of the tetrahedron that describes the endmembers (Figure S3). By contrast, if the fit is loosened, more

Figure 4. Example thermomagnetic data. Solid red lines measured on warming. Dashed blue lines measured on cooling. “Hump” between ~180 and 300 °C (c and
f) is associated with hydrothermal alteration at T ≥ 300 °C (Ade‐Hall et al., 1971).
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data fall within the tetrahedron, but with less realistic endmembers. Both
sets of endmembers are shown in Figure S3, and the difference between
the two (Figure S4) can be taken as an estimate of the uncertainty in the
fit. Downhole relative abundance in the average of the two fits is shown
in Figure 1d, where the two PSD endmembers are added together for
plotting. While imperfect, the analysis provides an estimate of downhole
variations in magnetic mineral fractions.

The weakly magnetic, noninteracting SD component is not obvious in
many samples, but is more predominant at shallower depths (<300 m
CCSF). Below ~550 m CCSF, the interacting SD component becomes
more dominant at the expense of the other components (statistically sig-
nificant increase from 0.11 ± 0.13 to 0.32 ± 0.30; see also Figure S4).
The two SD components are roughly inversely correlated with Ms, while
the PSD components positively correlate with Ms (Figure S5). This sug-
gests that the PSD endmembers are linked to the coarse magmatic oxides.

4.3. Thermomagnetic Data

All samples have at least one Tc close to 560 °C, consistent with low‐Ti
magnetite (Figure 1g and Table S1). The thermomagnetic χ(T) data dis-
play three primary types of behavior, based on the degree of reversibility
between the heating and cooling data. Type 1 samples (Figures 4a and
4d) have mostly reversible behavior, with a final susceptibility very close
to the starting value. Type 2 samples (Figures 4b and 4e) have irreversible
behavior, with a significant increase in susceptibility on cooling. Type 3
samples (Figures 4c and 4f) also increase in susceptibility on cooling,
but they additionally display a “hump” in the warming curve, between
about 180 and 300 °C, that is absent on cooling. Similar behavior has
been observed in volcanic rocks and has been linked to hydrothermal
alteration (e.g., Ade‐Hall et al., 1971; Gee et al., 2010). Type 3 samples
are restricted to depths less than ~330 m CCSF (Figure 1g). More gener-
ally, the number of samples with irreversible behavior and the amount of
irreversibility also decrease downhole. Irreversibility is quantified as the
percent difference in susceptibility at 100 °C between the warming and
cooling curves (Figure 1h).

The three samples with the greatest abundance of magnetic minerals (as
measured byMs>~1.5 Am2 kg−1) have slightly lowerTc (≤~550 °C), while
samples with Ms < 1.5 Am2 kg−1 almost all have Tc > 550 °C, suggesting
that some of the coarse magnetite includes additional Ti or other cation
impurities. In addition to this primary 550–560 °C Tc, seven samples also
have a secondary Tc (e.g., Figure 4e) ranging from 352 °C to 527 °C
(Figure 1g), consistent with a higher fraction of Ti. All but one of these
samples are in the upper 300 m, where concentrations of Fe‐Ti oxides
are greater. However, there is not a strong correlation between the pre-
sence or absence of this secondary Tc and either the amount of magnetic
material (Ms) or the estimated amount of visible oxides. Finally, data for
sample 360‐A‐U1473‐84R‐6W, 101 cm are noisy, but it appears to have
an additional inflection near 660–680 °C, consistent with the hematite
Néel point.

4.4. Low‐Temperature Data

All measured samples display a magnetite Verwey transition (Tv) near 120 K (Table S1) in both the FC/ZFC
data and in the 300‐K remanence data. In some cases, this signal dominates the low‐temperature data, and
the Tv is quite sharp (Figures 5a and 5b). In other cases, the transition takes place over a wider temperature

Figure 5. Representative low‐temperature remanence data. (left) The 1‐T
IRM imparted at 10 K and measured on warming following field‐cooling
(FC; blue) and zero‐field‐cooling (ZFC; red). (right) The 1‐T IRM imparted
at 300 K and measured on cooling (blue) and warming (red).
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range (Figures 5d and 5h). In one case, there is only an inflection in the FC/ZFC data (Figure 5i) at ~120 K.
The majority of Tv values are 121–122 K, but a few are higher (up to 127 K) or lower (down to 111 K). A sup-
pressed Tvmay arise from nonstoichiometry and/or cation substitution. For titanomagnetite (Fe3‐xTixO4, 0≤
x≤ 1), substitution of 0.01 mol fraction Ti (x = 0.01) will result in a reduction of Tv to about 110 K (Kozlowski
et al., 1996).

The fraction of remanence lost on cooling and warming back through Tv increases with an increasing contri-
bution from the FORC PSD endmembers (Figure S6). If the SIRMmemory is defined as the ratio of the final
remanence at 300 K divided by the original SIRM300 K, memory maximized at about 0.7–0.8 when the PSD
endmembers contribute less than half of the FORC distribution. Memory decreases to about 0.3–0.5 when
the PSD endmembers fully dominate the signal. This is consistent with irreversible changes in spin configura-
tions or domain wall movements as would occur in PSD or MD magnetite (Muxworthy & Williams, 1999).

In seven samples, the 10‐K FC/ZFC remanence includes a significant component that decays or unblocks at
about ~50 K, consistent with an ilmenite fraction (Figures 5c and 5e and Table S1). Smaller ilmenite fractions
are present in many other samples. The samples with the largest decrease at ~50 K are more likely to be iden-
tified as (olivine‐bearing) oxide gabbros (e.g., Figure 5c).

Although subtle, a pyrrhotite Besnus transition (Rochette et al., 1990, 2011) at ~27–32 K appears to be pre-
sent in the 300‐K remanence data in at least three samples (Figure 5f and Table S1). This transition also
appears to be present in at least some oceanic gabbros from Atlantis Massif in the Atlantic Ocean (Zhao &
Tominaga, 2009, their Figure 6). Both magmatic and alteration‐related sulfides, including pyrrhotite, have
been observed in Atlantis Bank gabbros (MacLeod et al., 2017a; Pariso & Johnson, 1993).

In sample 360‐A‐U1473‐84R‐6W, 101 cm, a slight drop in the 300‐K remanence on cooling at ~236 K may be
a hematite Morin transition, but there is no corresponding transition in the warming data. The Morin tran-
sition is nominally at 262 K (Morrish, 1994), but small grain size (Özdemir et al., 2008) and/or cation substi-
tution (e.g., Ericsson et al., 1986; Morin, 1950) can lower it. The apparent presence of the hematite Néel point
in this same sample (section 4.4) confirms hematite.

In most samples, the FC magnetization is greater than the ZFC magnetization at T < Tv, but the curves
merge at T > Tv. However, in three samples above 205 m CCSF, the two curves remain distinct until they
reach 300 K. This is consistent with observations of goethite (Liu et al., 2006), which has very high coerciv-
ities and a low Néel point (~395 K), leading to very little isothermal remanent magnetization acquisition at
10 K, but acquisition of a partial thermal remanence during in‐field cooling from 300 K.

Although these accessory phases are occasionally present, none of the pyrrhotite, hematite, or goethite
appear to carry any significant fraction of NRM, based on the thermal demagnetization data (MacLeod
et al., 2017a).

4.5. Magnetic Force Microscopy Data

MFM allows us to assess the internal magnetic structure of the coarse oxides. Example MFM results are pro-
vided in Figure 6 which shows both sample surface topography (height) along with the magnetic informa-
tion (phase). Compositional variations are sometimes reflected in the height data because a slight
hardness difference affects the polishing effectiveness (e.g., Figure 6f). The phase shift arises when the mag-
netized tip interacts with stray flux from the sample and produces a shift in the response compared to the
driving oscillation of the MFM tip. Dark and light coloring are correlated with flux into or out of the sample
surface. Gray represents no vertical flux. A sharp contrast from black to white typically corresponds to
domain walls, or grain or compositional boundaries.

MFM results show that the coarse oxides are very rarely multidomain. Rather, they are largely nonmagnetic
(Figures 6a–6c) or they have fine‐scale exsolution features (Figure 6f) that subdivide the grain into small
(<0.5 μm), presumably strongly interacting magnetic regions as seen in the small‐spatial‐scale phase varia-
tions in Figure 6e. Pariso and Johnson (1993) described large low‐Ti magnetite with fine, elongate ilmenite
bodies <1–2 μm in width, larger than what is observed here. The nonmagnetic oxides (e.g., Figure 6a) some-
times have single‐domain magnetic inclusions, as seen in Figure 6b where two chains of bright/dark spots
run from bottom left to top right.
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Figure 6. Example magnetic force microscopy (MFM) imagery. (left) Reflected light images. Bright, highly reflective areas are oxides in (a), (d), and (g) and are
oxides and sulfides in (j). Red squares show approximate location of MFM images. (middle) Phase data which are related to out‐of‐plane magnetic flux. Light
and dark regions are magnetized in opposite directions. (right) Height image shows topography of area scanned. Scale in nm at right. (a–c) Sample 360‐U1473A‐5R‐
1‐W, 11–13 cm shows an example of a large oxide (a). The ilmenite contains alignedmagnetic particles with a single‐domain signature (b) that is not reflected in the
topography (c). (d–f) Sample 360‐U1473A‐30R‐1‐W, 85–89 cm contains a large oxide (d) with fine‐scale two‐phase exsolution features (e). The compositional var-
iations are reflected in the topography (f). (Large bright spot in top right of f is debris on the sample.) (g–i) Sample 360‐U1473A‐5R‐1‐W, 11–13 cm provides an
example of a silicate crystal with true multidomain magnetic inclusions. High‐contrast domain walls are evident in the top part of the image. Some low‐contrast
domain walls are highlighted with red lines. (j–l) Sample 360‐U1473A‐25R‐2‐W, 28–30 cm (shown at room temperature after heating to 200 °C) contains magmatic
pyrrhotite with lamellar‐like domain structures (k).
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The only observed example of true multidomain behavior was in coarse oxide inclusions in a silicate mineral
in sample U1473A‐05R‐1W, 12 cm (Figures 6g–6i). Here the domain pattern was typical of that observed in
MD magnetite (Pokhil & Moskowitz, 1997). Complicated domain structures in the top middle part of the
image are associated with significant out‐of‐plane flux and are likely related to surface stresses. The larger,
lower contrast regions in the bottom part of the image show more typical domains where flux is mostly in‐
plane. Some of these domain walls unblocked on heating to 200 °C, consistent with MD magnetite (Heider
et al., 1988) and/or suggesting that this sample has a moderate amount of Ti substitution. The latter is con-
sistent with the observed secondary Tc of 352 °C, corresponding to a titanomagnetite composition of x ~0.35.

Sample U1473A‐25R‐2W, 29 cm also contained examples of monoclinic pyrrhotite with fine (about 1 μm to
<0.5‐μm width), lamellar domain structures (Figures 6k and 6l), typical of this mineral with a strong,
basal‐plane magnetic anisotropy (e.g., Kontny et al., 2007; Louzada et al., 2010). After heating to 200 °C,
the domain walls reorganize into a greater number of domains with less distance between the walls.

5. Discussion

At least three forms of magnetite have been identified based on the FORC unmixing: a noninteracting SD
component associated with plagioclase, an interacting SD component associated with olivine and/or pyrox-
ene, and one or more PSD components associated with primary magmatic magnetite. There is little variabil-
ity in the composition of the magnetite, which has a consistent Curie temperature throughout the hole,
regardless of the dominant magnetite population. Although the reported Curie temperatures are close to
560 °C, this is likely an underestimate due to calibration issues with the temperature sensor. The presence
of Verwey transition temperatures near 120 K suggests that the magnetite must be very close to stoichio-
metric, with few impurities. Pariso and Johnson (1993) report an average Tc of 582 °C from the Leg 118
Atlantis Bank samples from Hole 735B, and we believe that our data are consistent with this. A few samples
do have secondary, lower Tcs, consistent with the incorporation of some Ti or other impurity.

The thermomagnetic data also demonstrate that the uppermost ~500 m has undergone some kind of hydro-
thermal alteration. The hump in the χ(T) warming curves has been linked specifically to hydrothermal
alteration at >~300 °C (Ade‐Hall et al., 1971). The overall irreversibility in the thermomagnetic data may
arise from the presence of clays that then undergo alteration during the χ(T) measurements, forming mag-
netite on heating. The magnetic signature of goethite is consistent with observations of clays and other geo-
chemical and mineralogical observations demonstrating that the uppermost few hundred meters of Atlantis
Bank has undergone high‐grade granulite to amphibole facies alteration (Barnes & Cisneros, 2012; Cheadle
et al., 2016; Kendrick, 2019; MacLeod et al., 2017a).

As mentioned above (section 2.1), there is clearly a link between the shipboard‐defined lithology and mag-
netization intensity that is associated with the abundance of primarymagmatic oxides. It is important now to
distinguish between these discrete lithological units, which reflect approximate average variations in
mineral abundance (including oxides), and the continuous variations in Ms and other magnetic properties
that likely reflect real heterogeneity in oxide abundance at smaller spatial scales. In the following, we
assume that Ms more accurately reflects the abundance of magnetic oxides.

Themagnetic data present a cohesive picture of a downhole decrease in averagemagnetic grain size that also
correlates with a decrease in average magnetization intensity and inferred oxide abundance. This transition
happens between about 400 and 600 m CCSF, and below this depth MDF, median destructive temperature,
and Mrs/Ms are higher (Figure 1), all consistent with a smaller average grain size. On average, there is an
increase in the SD FORC endmembers and a decrease in the PSD FORC endmembers at depth. The more
common acquisition of a gyroremanent magnetization in the lower part of the hole is also consistent with
a SD mineralogy. Although variations derived from NRM (including MDF) could be influenced by a drilling
overprint, this is not true for high‐field measurements (hysteresis, FORC).

Magnetic domain state is also linked to magnetization intensity. The lower coercivity, PSD behavior tends to
be associated with higher NRM andMs (Figures 1, 2, and S3). This strongly suggests that the PSD behavior is
associated with the coarse, volumetrically abundant, primary magmatic oxides found (on average) in higher
concentrations in the oxide‐ and oxide‐bearing (olivine) gabbros. When present in great enough abundance,
the coarse oxides likely mask the presence of the remaining signal which comes dominantly from
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finer‐grained magnetite inclusions in olivine and/or pyroxene, with some contributions from plagioclase.
Some of the noninteracting SD signal may also come from the exsolution of SD magnetite within ilmenite
or other nonmagnetic oxides (e.g., Figures 6a–6c).

In spite of their large size (up to several millimeters), the coarse, magmatic oxides do not showmultidomain
behavior, but have FORC distributions consistent with PSD and/or strongly interacting single‐domain par-
ticles. MFM imaging demonstrates that this behavior arises from very fine lamellar exsolution features—
likely either magnetite‐ulvöspinel or magnetite‐ilmenite. The intergrowths serve to subdivide the larger
grains into regions <0.5 μm. This may include regions of true SD size, but certainly includes larger regions
that have traditionally been termed “pseudo‐single‐domain.” In fact, these PSD‐size particles or regions
represent a complex range of behaviors associated with vortex states (e.g., Lascu et al., 2018; Roberts et al.,
2017). Here the behavior of the regions will be additionally complicated by strong interactions. While these
samples have lower coercivity than samples lacking coarse oxides, they will be more stable over geologic
time compared to true multidomain magnetite.

The coarse oxides will contribute more strongly to near‐bottom magnetic anomalies because the oxide‐rich
gabbros are closer to the seafloor and have an NRM at least 1 order of magnitude higher than regular olivine
gabbros (0.45 versus 2.11 A m−1; section 2.1). Although the abundance of magnetic oxides is clearly grada-
tional and heterogeneous on small spatial scales, at a larger scale we may characterize the source layer as a
two endmember system. One endmember is dominated by strongly magnetic oxide‐rich gabbros with a
greater PSD contribution and the other by more weakly magnetic regular gabbros with more SD‐like beha-
vior. As demonstrated by geological mapping and drilling elsewhere on Atlantis Bank, the distribution of
oxide‐rich gabbros is laterally heterogeneous and may lead to strong intensity contrasts that could compli-
cate anomaly interpretations. Further complications will arise if magnetization acquisition is asynchronous
across these two components, leading to a shift in polarity boundaries. This could happen if the coarse oxides
are magnetically viscous and carry a significant normal overprint. However, they appear to carry a relatively
stable remanence of reverse polarity, identical to the polarity of the less magnetic gabbros and consistent
with cooling during reverse Chron C5r.3r (MacLeod et al., 2017a). Therefore, assuming that all magnetite
was formed at T > Tc and the two units were thermally homogeneous as they cooled, there should be no dis-
continuity in the polarity boundary related to lithology.

6. Conclusions

Gabbro samples from International Ocean Discovery Program Hole U1473A on Atlantis Bank near the
Southwest Indian Ridge have magnetic remanence and magnetic properties that are dominated by mostly
puremagnetite, present in at least three forms. In the uppermost ~400–600mof the hole, coarse (up to several
millimeters) primary magmatic oxides with fine‐scale intergrowths dominate the signal. These are most
abundant in the Fe‐Ti oxide gabbros found more frequently in the uppermost parts of the hole. Additional
contributions are frommagnetic inclusions in plagioclase, olivine, and/or pyroxene. The magnetic signature
of the coarse oxides is similar to that of PSD magnetite, arising from strongly interacting magnetic regions of
<0.5 μm in size, resulting from the intergrowths. Plagioclase inclusions have a noninteracting SD signature,
and this component rarely dominates the bulk rock signature. The olivine and/or pyroxene inclusions have
an interacting SD signature, likely arising from clusters of magnetite along crystal discontinuities, such as
fractures or cleavage planes. This interacting SD component becomes more prominant at depths >600 m
CCSF. At Atlantis Bank, the magnetic contribution from the coarse oxides which are volumetrically abun-
dant in the near‐surface oxide gabbros will likely dominate the near‐bottom magnetic anomaly signal.
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