3,369 research outputs found
Energy-Momentum Complex in M\o ller's Tetrad Theory of Gravitation
M\o ller's Tetrad Theory of Gravitation is examined with regard to the
energy-momentum complex. The energy-momentum complex as well as the
superpotential associated with M\o ller's theory are derived. M\o ller's field
equations are solved in the case of spherical symmetry. Two different
solutions, giving rise to the same metric, are obtained. The energy associated
with one solution is found to be twice the energy associated with the other.
Some suggestions to get out of this inconsistency are discussed at the end of
the paper.Comment: LaTeX2e with AMS-LaTeX 1.2, 13 page
Calorons and BPS monopoles with non-trivial holonomy in the confinement phase of SU(2) gluodynamics
With the help of the cooling method applied to SU(2) lattice gauge theory at
non-zero we present numerical evidence for the existence of
superpositions of Kraan-van Baal caloron (or BPS monopole pair) solutions with
non-trivial holonomy, which might constitute an important contribution to the
semi-classical approximation of the partition function.Comment: 3 pages, 6 figures, contribution to Lattice2002(topology
Target mass number dependence of subthreshold antiproton production in proton-, deuteron- and alpha-particle-induced reactions
Data from KEK on subthreshold \bar{\mrm{p}} as well as on and
\mrm{K}^\pm production in proton-, deuteron- and -induced reactions
at energies between 2.0 and 12.0 A GeV for C, Cu and Pb targets are described
within a unified approach. We use a model which considers a nuclear reaction as
an incoherent sum over collisions of varying numbers of projectile and target
nucleons. It samples complete events and thus allows for the simultaneous
consideration of all final particles including the decay products of the
nuclear residues. The enormous enhancement of the \bar{\mrm{p}} cross
section, as well as the moderate increase of meson production in deuteron and
induced compared to proton-induced reactions, is well reproduced for
all target nuclei. In our approach, the observed enhancement near the
production threshold is mainly due to the contributions from the interactions
of few-nucleon clusters by simultaneously considering fragmentation processes
of the nuclear residues. The ability of the model to reproduce the target mass
dependence may be considered as a further proof of the validity of the cluster
concept.Comment: 9 pages, 4 figure
PLAN2L: a web tool for integrated text mining and literature-based bioentity relation extraction
There is an increasing interest in using literature mining techniques to complement information extracted from annotation databases or generated by bioinformatics applications. Here we present PLAN2L, a web-based online search system that integrates text mining and information extraction techniques to access systematically information useful for analyzing genetic, cellular and molecular aspects of the plant model organism Arabidopsis thaliana. Our system facilitates a more efficient retrieval of information relevant to heterogeneous biological topics, from implications in biological relationships at the level of protein interactions and gene regulation, to sub-cellular locations of gene products and associations to cellular and developmental processes, i.e. cell cycle, flowering, root, leaf and seed development. Beyond single entities, also predefined pairs of entities can be provided as queries for which literature-derived relations together with textual evidences are returned. PLAN2L does not require registration and is freely accessible at http://zope.bioinfo.cnio.es/plan2l
Quantum Walk in Position Space with Single Optically Trapped Atoms
The quantum walk is the quantum analogue of the well-known random walk, which
forms the basis for models and applications in many realms of science. Its
properties are markedly different from the classical counterpart and might lead
to extensive applications in quantum information science. In our experiment, we
implemented a quantum walk on the line with single neutral atoms by
deterministically delocalizing them over the sites of a one-dimensional
spin-dependent optical lattice. With the use of site-resolved fluorescence
imaging, the final wave function is characterized by local quantum state
tomography, and its spatial coherence is demonstrated. Our system allows the
observation of the quantum-to-classical transition and paves the way for
applications, such as quantum cellular automata.Comment: 7 pages, 4 figure
On the dependence between UV luminosity and Lyman-alpha equivalent width in high redshift galaxies
We show that with the simple assumption of no correlation between the
Ly-alpha equivalent width and the UV luminosity of a galaxy, the observed
distribution of high redshift galaxies in an equivalent width - absolute UV
magnitude plane can be reproduced. We further show that there is no dependence
between Ly-alpha equivalent width and Ly-alpha luminosity in a sample of
Ly-alpha emitters. The test was expanded to Lyman-break galaxies and again no
dependence was found. Simultaneously, we show that a recently proposed lack of
large equivalent width, UV bright galaxies (Ando et al. 2006) can be explained
by a simple observational effect, based on too small survey volumes.Comment: 7 pages, 3 figures, 2 tables, accepted in MNRA
On the Stereochemistry of the Cations in the Doping Block of Superconducting Copper-Oxides
Metal-oxygen complexes containing Cu,- Tl-, Hg-, Bi- and Pb-cations are
electronically active in superconducting copper-oxides by stabilizing single
phases with enhanced , whereas other metal-oxygen complexes deteriorate
copper-oxide superconductivity. Cu, Tl, Hg, Bi, Pb in their actual oxidation
states are closed shell or inert pair ions. Their electronic
configurations have a strong tendency to polarize the oxygen environment. The
closed shell ions with low lying
excitations form linear complexes through hybridization polarizing
the apical oxygens. Comparatively low excitation energies
distinguish from other closed shell
ions deteriorating copper-oxide superconductivity, {\it e.g.} .Comment: 5 pages, uses REVTEX. To be published in: J. Superconductivity, Proc.
Int. Workshop on "Phase Separation, Electronic Inhomogenities and Related
Mechanisms for High T_c Superconductors", Erice (Sicily) 9-15 July 199
A relativistic parton cascade with radiation
We consider the evolution of a parton system which is formed at the central
rapidity region just after an ultrarelativistic heavy ion collision. The
evolution of the system, which is composed of gluons, quarks and antiquarks, is
described by a relativistic Boltzmann equations with collision terms including
radiation and retardation effects. The equations are solved by the test
particle method using Monte-Carlo sampling. Our simulations do not show any
evidence of kinetic equilibration, unless the cross sections are artificially
increased to unrealistically large values.Comment: 14 pages, 4 figure
Chromosome assignment of two cloned DNA probes hybridizing predominantly to human sex chromosomes
In situ hybridization experiments were carried out with two clones, YACG 35 and 2.8, which had been selected from two genomic libraries strongly enriched for the human Y chromosome. Besides the human Y chromosome, both sequences strongly hybridized to the human X chromosome, with few minor binding sites on autosomes. In particular, on the X chromosome DNA from clone YACG 35 hybridized to the centromeric region and the distal part of the short arm (Xp2.2). On the Y chromosome, the sequence was assigned to one site situated in the border region between Yq1.1 and Yq1.2. DNA from clone 2.8 also hybridized to the centromeric region of the X and the distal part of the short arm (Xq2.2). On the Y, however, two binding sites were observed (Yp1.1 and Yq1.2). The findings indicate that sex chromosomal sequences may be localized in homologous regions (as suggested from meiotic pairing) but also at ectopic sites
- …