8,153 research outputs found
Unusual Kondo physics in a Co impurity atom embedded in noble-metal chains
We analyze the conduction bands of the one dimensional noble-metal chains
that contain a Co magnetic impurity by means of ab initio calculations. We
compare the results obtained for Cu and Ag pure chains, as well as O doped Cu,
Ag and Au chains with those previously found for Au pure chains. We find
similar results in the case of Cu and Au hosts, whereas for Ag chains a
different behavior is obtained. Differences and similarities among the
different systems are analyzed by comparing the electronic structure of the
three noble-metal hosts. The d-orbitals of Cu chains at the Fermi level have
the same symmetry as in the case of Au chains. These orbitals hybridize with
the corresponding ones of the Co impurity, giving rise to the possibility of
exhibiting a two-channel Kondo physics.Comment: Accepted in IEEE Trans. Magn. - April 201
Universal transport signatures in two-electron molecular quantum dots: gate-tunable Hund's rule, underscreened Kondo effect and quantum phase transitions
We review here some universal aspects of the physics of two-electron
molecular transistors in the absence of strong spin-orbit effects. Several
recent quantum dots experiments have shown that an electrostatic backgate could
be used to control the energy dispersion of magnetic levels. We discuss how the
generically asymmetric coupling of the metallic contacts to two different
molecular orbitals can indeed lead to a gate-tunable Hund's rule in the
presence of singlet and triplet states in the quantum dot. For gate voltages
such that the singlet constitutes the (non-magnetic) ground state, one
generally observes a suppression of low voltage transport, which can yet be
restored in the form of enhanced cotunneling features at finite bias. More
interestingly, when the gate voltage is controlled to obtain the triplet
configuration, spin S=1 Kondo anomalies appear at zero-bias, with non-Fermi
liquid features related to the underscreening of a spin larger than 1/2.
Finally, the small bare singlet-triplet splitting in our device allows to
fine-tune with the gate between these two magnetic configurations, leading to
an unscreening quantum phase transition. This transition occurs between the
non-magnetic singlet phase, where a two-stage Kondo effect occurs, and the
triplet phase, where the partially compensated (underscreened) moment is akin
to a magnetically "ordered" state. These observations are put theoretically
into a consistent global picture by using new Numerical Renormalization Group
simulations, taylored to capture sharp finie-voltage cotunneling features
within the Coulomb diamonds, together with complementary out-of-equilibrium
diagrammatic calculations on the two-orbital Anderson model. This work should
shed further light on the complicated puzzle still raised by multi-orbital
extensions of the classic Kondo problem.Comment: Review article. 16 pages, 17 figures. Minor corrections and extra
references added in V
Orbit bifurcations and the scarring of wavefunctions
We extend the semiclassical theory of scarring of quantum eigenfunctions
psi_{n}(q) by classical periodic orbits to include situations where these
orbits undergo generic bifurcations. It is shown that |psi_{n}(q)|^{2},
averaged locally with respect to position q and the energy spectrum E_{n}, has
structure around bifurcating periodic orbits with an amplitude and length-scale
whose hbar-dependence is determined by the bifurcation in question.
Specifically, the amplitude scales as hbar^{alpha} and the length-scale as
hbar^{w}, and values of the scar exponents, alpha and w, are computed for a
variety of generic bifurcations. In each case, the scars are semiclassically
wider than those associated with isolated and unstable periodic orbits;
moreover, their amplitude is at least as large, and in most cases larger. In
this sense, bifurcations may be said to give rise to superscars. The
competition between the contributions from different bifurcations to determine
the moments of the averaged eigenfunction amplitude is analysed. We argue that
there is a resulting universal hbar-scaling in the semiclassical asymptotics of
these moments for irregular states in systems with a mixed phase-space
dynamics. Finally, a number of these predictions are illustrated by numerical
computations for a family of perturbed cat maps.Comment: 24 pages, 6 Postscript figures, corrected some typo
Photoinduced charge transport over branched conjugation pathways: donor–acceptor substituted 1,1-diphenylethene and 2,3-diphenylbutadiene
This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence (http://creativecommons.org/licenses/by-nc/3.0/)Photoinduced charge transport in 1,1-diphenylethene and 2,3-diphenylbutadiene functionalized with an electron donating dimethylamino group and an electron accepting cyano group is reported. UV-spectroscopy reveals that in these compounds, which incorporate a cross-conjugated spacer, a direct charge transfer transition is possible. It is shown by application of the generalized Mulliken–Hush approach that introduction of an additional branching point in the π-electron spacer (i.e., when going from the 1,1-diphenylethene to the 2,3-diphenylbutadiene) leads to only a moderate reduction (68–92%) of the electronic coupling between the ground and the charge separated state. The σ-electron system is however likely to be dominant in the photoinduced charge separation process
Dft And X-ray Study Of Structural, Electronic, Elastic And Optical Properties In Be1–xznxs Alloys Depending On Vegard’s Law
Structural, optical and electronic properties and elastic constants of Be1–xZnxS alloys have been studied by employing the commercial code Castep based on density functional theory. The generalized gradient approximation and local density approximation were utilized as exchange correlation. Using elastic constants for compounds, bulk modulus, band gap, Fermi energy and Kramers–Kronig relations, dielectric constants and the refractive index have been found through calculations. Apart from these, X-ray measurements revealed elastic constants and Vegard’s law. It is seen that results obtained from theory and experiments are all in agreement
Conductance Quantization at zero magnetic field in InSb nanowires
Ballistic electron transport is a key requirement for existence of a
topological phase transition in proximitized InSb nanowires. However,
measurements of quantized conductance as direct evidence of ballistic transport
have so far been obscured due to the increased chance of backscattering in one
dimensional nanowires. We show that by improving the nanowire-metal interface
as well as the dielectric environment we can consistently achieve conductance
quantization at zero magnetic field. Additionally, studying the sub-band
evolution in a rotating magnetic field reveals an orbital degeneracy between
the second and third sub-bands for perpendicular fields above 1T
Expressiveness modulo Bisimilarity of Regular Expressions with Parallel Composition (Extended Abstract)
The languages accepted by finite automata are precisely the languages denoted
by regular expressions. In contrast, finite automata may exhibit behaviours
that cannot be described by regular expressions up to bisimilarity. In this
paper, we consider extensions of the theory of regular expressions with various
forms of parallel composition and study the effect on expressiveness. First we
prove that adding pure interleaving to the theory of regular expressions
strictly increases its expressiveness up to bisimilarity. Then, we prove that
replacing the operation for pure interleaving by ACP-style parallel composition
gives a further increase in expressiveness. Finally, we prove that the theory
of regular expressions with ACP-style parallel composition and encapsulation is
expressive enough to express all finite automata up to bisimilarity. Our
results extend the expressiveness results obtained by Bergstra, Bethke and
Ponse for process algebras with (the binary variant of) Kleene's star
operation.Comment: In Proceedings EXPRESS'10, arXiv:1011.601
- …
