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ABSTRACT
Structural, optical and electronic properties and elastic constants of Be1–xZnxS alloys have been studied 
by employing the commercial code Castep based on density functional theory. The generalized gradient 
approximation and local density approximation were utilized as exchange correlation. Using elastic 
constants for compounds, bulk modulus, band gap, Fermi energy and Kramers–Kronig relations, 
dielectric constants and the refractive index have been found through calculations. Apart from these, 
X-ray measurements revealed elastic constants and Vegard’s law. It is seen that results obtained from 
theory and experiments are all in agreement.
Keywords: BeZnS, Castep, DFT, Vegard.

1  INTRODUCTION
Semiconductor electrical and optical devices are currently of great demand. II–VI and III–V 
alloys have been commonly investigated. The use of the compounds beryllium and chalcogens 
in optoelectronic devices has attracted a great interest. The use of green and blue wavelength 
within visible region in Leds and Lazer diots is significant [1]. Beryllium chalcogen com-
pounds draw attention owing to BeSe, BeS and BeTe strong lattices, hard and high covalent 
relations and accordingly, they extend the lifespan of the device [2]. As a result, they were 
utilized in order to improve the life and hardness of the material [2,3]. Zinc-blend, zinc sulfur 
(ZnS), zinc tellurium (ZnTe) and zinc tellurium (ZnSe) wide gaps are used in the manufacture 
of II–VI semiconductors and especially semiconductor devices [4]. It is seen that beryllium 
chalcogens BeX (X = S, Se, Te) that indicate a unique relation between II–VI compounds 
and  large band gaps have recently become focus of interest [5]. Hence, the ternary alloys 
(Zn1–xBexS) that Be composes with ZnX are significant in terms of increasing the hardness of 
material, decreasing the distortion level and extending the life time of an advanced device 
[6,7].

The other curious property of beryllium chalcogens is the harmony contingency on 
sublayers in a state of Zn1–xBexS ternary alloy [8]. The composition change of Zn1–xBexS 
alloys and bond ionicity lead to substantial alterations on physical properties such as electronic 
band structures and cage parameters. It is essential to research alloys in detail to advance 
heterostructures based on these recent material systems. We have studied within AP-LAPW 
(the full-potential linearized augmented-plane wave) to investigate the structural and 
electronic properties of alloys composed of beryllium and chalcogens (Zn1–xBexS) for the 
design of blue–green laser diots [9]. In this study, we aim to obtain the optical, electronic 
properties of Be1–xZnxS mixed crystals and elastic constants, like bulk modulus, young 
modulus, shear modulus, Poisson’s ratio, compressibility and B/G by means of Castep 
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program based on density function theory (DFT) and compare the results of the elastic 
constants obtained via X-ray analyses based on Vegard’s law.

2  CALCULATIONS
We obtained the calculations using the plane-wave pseudo-potential method, the 

commercial CASTEP code [10] based on DFT (Cambridge Sequential Total Energy Package), 
the generalized gradient approximation (GGA) approach, the norm-conserving Be, Zn and 
S pseudo-potentials of which were parameterized by Perdew, Burke and Emzerhof and finally 
the Troullier simulation [11]. That’s why, the valence electron configuration for beryllium, 
zinc and tellurium atom norm-conserving pseudo-potential was used to describe the 
electron-ion interaction of 2s2, 3d104s2 versus 5s25p4. In this computer code, plane wave 
functions of valence electrons were explained through a plane wave base constant and the 
usage of norm-conserving pseudo-potential allows a plane wave energy Ecut. Solely, the 
kinetic energy which is lower than Ecut and plane waves were utilized in expansion. The inter-
related space integration upon Brillouin region was similar to a Monkhorst–Pack mesh, 
which is used by a careful sample in a number ending in k [12]. Wave functions were expanded 
up to a kinetic energy cut-off of 600 eV value in the state of plane waves. A mesh lattice 
parameter in Brillouin region, for x = 0.5 k-point clusters are 6 × 6 × 4, cut-off value is 350 
eV and x other compounds is 4 × 4 × 4 and cut-off value is 620 eV. Charge densities 
were  approximated to 2 × 106 eV/atom using the self-consistent calculations. Energy 
shift, maximum force, maximum strain and transposition tolerances are received as 2 × l05 
eV/atom, 0.05 eV/Å, 0.1 GPa and 0.002 Å. Structural properties of BeS and ZnS binary com-
pounds have been computed within surface-centered cubic structure (F-43M). We have 
semi-experimentally calculated the structural properties of A1–xBxC type of ternary alloys 
within Castep and Vegard’s law through X-ray analysis for forces in the position of equilibrium 
of various x = 0.25, 0.50, 0.75 concentrations. Binary and various cut-off values of alloys 
have been optimized by Castep. Vegard’s law elastic constants were experimentally calculated 
for various x = 0.25–0.50–0.75 values using X-ray.

AC and BC are a couple of semiconductors and their semiconductor alloy is A1–xBxC. The 
compound of x alloy or mole fraction of alloy is the lattice parameter of AC, which is received 
as aAC, lattice parameter of BC is received as aBCand lattice parameter of alloy is recieved as 
aABC(x)=xaAC+(1-x)aBC. This is called Vegard’s law [13,14]. Here, while AC is BeS, BC is 
ZnS. For these components, PDF database numbers (77-2100 and 09-0202) were used and 
these results were described experimentally with X-ray.

3  RESULTS AND CALCULATIONS 

3.1  Electronic and structural properties 

There are eight distinct atoms (4 Be and 4 S) within (F-43M) unit cell of surface-centered 
cubic structure of BeS compound. When we adhere Zn instead of Be, depending on the 
increased rate of x in Be1–xZnxS alloy, Be3Zn1S4 or Be1Zn3S4 is just a simple cubic structure 
(P-43M) for contingent crystal structure but these are merely a simple tetragonal (P4M2) 
structure for Be3Zn1S4. Bond lengths in Be1–xZnxS alloy based on the increased x value are 
shown in Table 1. The maximum value of bond lengths is obtained at x=0.5 for Be-S and 
Be-Zn. S-S and Zn-S bond lengths increase as x rises (x=0.25, 0.50 and 0.75).
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By using experimental band gap, density and lattice parameter values for BeS [15] and 
ZnS [16], and the structural and optical values of Be1–xZnxS calculated using Vegard’s law are 
shown in Table 2 for x=0.25–0.50–0.75.

We initially computed lattice constants and bulk modulus for each x value of Be1–xZnxS via 
Castep. The experimental and theoretical results are shown in Table 3 [17,18]. Lattice 
parameters for Be1–xZnxS alloys have been explored as 5.02 for x=0.25, 4.31–4.31 and 3.63 
for x=0.5 and 5.35 Å for x= 0.75, respectively. Lattice parameters appear to be in agreement 
with those previously calculated [19,20]. The bulk modulus for Be1–xZnxS is 88.53–75.38 
and 73.72 GPa. The maximum bulk modulus (88.53 GPa) is for Be3Zn1S4. Consequently, it 
is less compressible and its value is 0.016 1/GPa. The compressibility changes according to 
the increasing value of x; it is Be3Zn1S4 < Be1Zn1S2 < Be1Zn3S4.

Using lattice constants calculated at equilibrium position for Be1-xZnxS alloys; electronic 
band structures corresponding to high symmetry directions within primary Brillouin region 
and electronic density of state (DOS) corresponding to band structures have been obtained 
and indicated in Fig. 1. It is shown that band structures and state densities were in good 
agreement for all samples but DOS of Be1Zn1S2 is given only in Fig. 1. It is seen in band 
graphic that curves of DOSs create sharp peaks upon bands.

All alloys have a direct band transition and display a semiconductor property. The 
calculated data and other theoretical data have been listed in Table 4 [9,21]. Band profiles and 
band gap values are in agreement with the former studies. Band gap energies corresponding 
to x (x=0.25, 0.5, 0.75) of Be1-xZnxS alloy are shown in Fig. 1.

Bulk modulus for Be1–xZnxS by means of X-ray has been computed as 88.97–85.31–81.71 
GPa. The maximum bulk modulus (88.97 GPa) is for Be3Zn1S4; it is less compressible and 
its value is 0.01121/GPa. Compressibility shifts as Be3Zn1S4 < Be1Zn1S2 < Be1Zn3S4 
according to the increasing x value.

Table 1:  Bond lengths and crystal structures for this study.

Be1–xZnxS
Space group – 
construction Be-S (Å) Zn-S (Å) S-S (Å) Zn-Be (Å)

Be3Zn1S4 P-43M cubic 2.14 2.30 3.36 3.55
Be1Zn1S2 P-4M2 tetragonal 2.12 2.40 3.39 3.71
Be1Zn3S4 P-43M cubic 2.15 2.34 3.51 3.74

Table 2:  Band gap, density and lattice parameter values calculated for Be1–xZnxS.

Be1–xZnxS Band gap (eV) Density (g/cm3) Lattice parameter (Å)

BeS 4.17 2.36 4.87
ZnS 1.90 4.09 5.42
Be3Zn1S4 3.60 2.79 5.01
Be1Zn1S2 3.03 3.22 5.14
Be1Zn3S4 2.46 3.65 5.28
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Table 3: � Other lattice constant a0, bulk modulus, V cell volume experimental and theoretical 
studies for Be1–xZnxS.

Be1–xZnxS Reference a0 (Å) b0 (Å) c0 (Å) V (Å)3 B (GPa)

Be3Zn1S4 In this study 5.02 5.02 5.02 127.01 88.53
In this study (X-ray) 5.01 5.01 5.01 125.75 88.97
Theory [9]a 5.06a 5.06a 5.06a – 86.60
Theory [21] 4.98 4.98 4.98 – 92.63

Be1Zn1S2 In this study 3.63 3.63 5.35 70.65 75.38
In this study (X-ray) 5.15 5.15 5.15 136.59 85.31
Theory [9]a 5.21a 5.21a 5.21a – 80.74
Theory [21] 5.11 5.11 5.11 – 89.10

Be1Zn3S4 In this study 5.30 5.30 5.30 149.02 73.72
In this study (X-ray) 5.28 5.28 5.28 147.20 81.71
Theory [9]a 5.33a 5.33a 5.33a – 74.58a

Theory [21] 5.23 5.23 5.23 – 83.06

Table 4: Other band gap experimental and theoretical studies for Be1-xZnxS.

Be1–xZnxS Reference Eg (eV)

Be3Zn1S4 In this study (Castep) 3.20
In this study (X-ray) 3.60
Theory [9] 3.19
Theory [21] 2.94

Be1Zn1S2 In this study 3.18
In this study (X-ray) 3.03
Theory [9] 3.22
Theory [21] 2.95

Be1Zn3S4 In this study 2.76
In this study (X-ray) 2.46
Theory [9] 2.58
Theory [21] 2.81

Figure 1: � Be1–xZnxS (x=50%) band structure of Fermi level based on x in 0 and density of 
state (DOS) have been calculated.
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3.2  Elastic properties

The elastic constants of solids establish a relation between mechanical and properties of 
solids; they provide substantial information about the nature of forces (hardness is related to 
yield stress) and stability in particular; ab-initio calculation requires a concise method. Forces 
and elastic constants are related to the first and the second derivatives of the interatomic 
potentials. The second-order elastic constants are computed within (Cij) ‘Volume-conserving’ 
technique [22,23]. Six distinct elastic constants are required to be Cij (C11, C12, C13, C33, C44 
and C66) for a stable tetragonal structure and they need to meet Born–Huang criteria of C11>0, 
C33>0, C44>0, C66>0, (C11−C12) >0, (C11+C33−2C13)>0 and [2(C11+C12)+C33+4C13]>0 in 
order to maintain stability [17]. Three distinct elastic constants are required to be C ij (C11, 
C12 and C44) for stable cubic crystals [24] and they need to meet Born–Huang criteria of 
(C11−C12)>0, C11>0, C44>0 and 2(C11+ C12)>0 in order to maintain stability [17].

We have calculated the elastic constants for Be1–xZnxS alloys within Castep and X-ray 
experimentally. We have obtained six distinct elastic constants for Primitive Tetragonal 
(P-4M2) structure for Be1Zn1S2 when we have computed within Castep. Since we have 
calculated a primitive cubic (P-43M), we have obtained three distinct elastic constants. 
Elastic constants we have computed meet all the stability requirements and they are shown 
in Table 5. It is seen that the results we have computed via both methods are in agreement. 
We have computed bulk modulus, Young’s modulus, shear (slide) modulus (G), compressi-
bility, B/G ratio an Poisson’s ratio (v) using elastic constants. We have listed the results in 
Table 6.

Table 5: Elastic constants we calculated for Be1–xZnxS alloys via Castep

Be1–xZnxS C11 C12 C13 C33 C44 C66

BeS 155.13a 61.50a 81.6a

ZnS 104b 65.0e 46.2b

Be3Zn1S4 142.2/143.2 62.33 – – 72.79/70.59 –
Be1Zn1S2 129.5/112.9 63.25 –/55.13 –/112.76 63.93/68.91 –/61.70
Be1Zn3S4 116.8/108.7 63.25 – – 55.0655.5 –

a,bReferences [4,25].

Table 6: � Results we calculated via Castep for bulk modulus (B), Young’s modulus (E), shear 
modulus (G), compressibility, B/G, Kleinman parameter (ξ) and Poisson’s ratio (v) 
for Be1–xZnxS alloys.

Be1–xZnxS
Poisson  
ratio (v)

Bulk 
modulus  

(B)

Shear 
modulus  

(G) B/G
Compressibility  

(1/GPa)

Kleinman 
parameter 

(ξ)

Be3Zn1S4 0.29/0.30 88.53/88.97 61.10/57.22 1.38/1.49 0.0112/0.0112 0.56/0.57
Be1Zn1S2 0.32/032 75.38/85.31 46.99/49.11 1.60/1.65 0.0132/0.0117 0.64/0.61
Be1Zn3S4 0.34/0.35 73.72/81.06 41.10/41.21 1.68/1.85 0.0135/0.0123 0.63/0.65
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Bulk modulus, Young’s modulus, shear (slide) modulus (G), compressibility, B/G ratio and 
Poisson’s ratio (v) can be correlated indirectly to brittleness [19]. B/G>1.75 means that the 
alloy is flexible; B/G<1.75 means that the alloy is brittle [20]. The alloy and bulk modulus 
(B) of which is larger is less compressible. Poisson’s ratio v value is lower than 0.1 for cova-
lent materials. The typical v value of ionic materials is 0.25 [26]. Poisson’s ratio of a material 
can act flexibly for v>1/3 and it can act in a brittle way for v<1/3 [27]. Poisson’s ratio values 
of (v)=0.25 and (v)=0.5 are the upper and lower limit of the force fields within the center of 
solids [28]. Kleinman parameter ξ defined as internal strain is an important parameter [29] 
and is related to maximum strains. If ξ=0, atom remains in the center on distorted four-faced. 
If ξ=1, bond twist appears [30].

3.3  Debye temperature

Debye temperature is the temperature of the crystal’s highest vibration mode, and is shown 
with qD. Moreover, it is a fundamental physical characteristic about elastic constant and 
melting point. It is used to classify the solids according to their high and low temperature 
zones. Let the temperature be T, if Debye temperature is T > qD, it shows that all modes have 
k βT energy, however, if T < qD, it shows high-frequency modes are frozen [30]. It is concluded 
that phones vibrational wavelengths are small on Debye temperature; if it is below, it is big. 
The calculation of Debye temperature can be found in Reference [31].

Average value of speed of sound is calculated from the following equation:

	

vm = +


















−
1
3

2 1
3 3

1 3

v vt l

� (1)

vl and vt are longitudinal and transverse wave speed, respectively. From Navier equation 
[32],

	
v B G G
l =

+
=

3 4
3r r

    and    vt � (2)

are obtained. Here G is the shear module. For Be1-xZnxS, density (ρ) is listed in Table 7 by 
calculating the longitudinal (nl), transverse (nt) and (nm) speed of sound and Debye 
temperature with Castep and X-ray.

Table 7: Density (ρ), longitudinal (nl), transverse (nt), average (nm) elastic wave velocities 
and Debye temperature (qD) for Be1–x-ZnxS in this study.

Be1–xZnxS ρ (g/cm3) nl (103m/s) nt (103m/s) nm (103m/s) qD (K)

Be3Zn1S4 (Castep) 2.92 4.74 7.63 5.06 525
Be3Zn1S4 (X-ray) 2.79 4.53 7.70 5.02 513
Be2Zn2S4 Castep) 3.25 3.80 6.52 4.22 482
Be2Zn2S4 (X-ray) 3.22 3.90 6.84 4.34 494
Be1Zn3S4 Castep) 3.78 3.30 5.83 3.67 475
Be1Zn3S4 (X-ray) 3.66 3.35 6.09 3.74 479
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3.4  Optical properties

When the electromagnetic radiation is sent upon the material, optical phenomena start as a 
consequence of the interaction of photons and electron atoms. If the dispatched photons have 
an energy which is equal to the banned energy gap (Eg), the electron of the material is stimu-
lated to high-energy level. If their energy is lower than the energy gap, photons are replaced 
instead of absorption and the material is defined as lucid [33].

In this work, we need to define the linear reaction of dielectric function to electromagnetic 
radiation about the interaction of photons of ε(ω) with electrons in order to investigate the 
optic behavior of Be1–xZnxS. ε2(ω), which is known as the imaginary part of dielectric 
function, can be calculated through the matrix components of momentum and the selection 
rule of filled and unfilled wave functions. The real part of the dielectric function ε1(ω) is 
related to Kramers–Kronig relation. Other optical properties were derived from the complex 
part of the dielectric function. Definitions to describe dielectric functions, refractive index 
n(ω) and extinction coefficient K ( )w  can be found in Refs. [34,35]. Results are listed in 
Fig. 2.

There is a relation between refraction subscript in low frequencies and dielectric constant 
shown below:

	 n(0)= ε1/2(0).� (3)

Refraction subscript and dielectric constants are important in determining the optic and 
electric feature of crystal. A few experiments interrelate band gap and refraction of 
semiconductors. This experimental relation is taken from Refs. [36,37]

	

n
E Bg

= +
+









1

2
A � (4)

Here A=13.6 eV and B=3.4 eV. With this method, dialectic constant and refraction subscript 
which were obtained experimentally by X-ray and theoretically by Castep for this compound 
are compared in Table 8.

The fundamental peaks of real part of dielectric function is 5.69–7.11–6.20 eV for contri-
bution values of x=0.25–0.50–0.75, respectively. The frequency value of ε1(0)=5.38–5.85–5.66 
eV gives the static dielectric constant for x=0.25–0.50–0.75, respectively. The imaginary part 
of dielectric constant commences to absorb the radiation around 3.23–3.19–2.8 eV according 

Figure 2: � (a) Real and imaginary parts of dielectric constant and (b) refraction (n) constant 
and extinction (k) constant.
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to the contribution values. These are close to band gap energy, represent the optical transition 
between conductivity band and the valence band. Alloy acts as a brittle substance until the 
value in which the dispersion curve begins to increase and this is the region that dispersion is 
minor. Values when the imaginary part of dielectric constant is maximum are 6.82–3.84–5.4 
eV for contribution values of x=0.25–0.50–0.75, respectively. These values correspond to 
interband transitions [38].

4  CONCLUSIONS
In this study structural, electronic, optical properties and elastic constants for Be1–xZnxS have 
been investigated within the commercial code Castep based on DFT. The GGA has been used 
for the exchange correlation. Using Castep program and X-ray device, elastic constants for 
zero pressure have been calculated and based on elastic constants, bulk modulus (B), Young’s 
modulus (E), Shear modulus (G), compressibility, B/G and Poisson’s ratio (v) have been 
calculated. The results we computed by means of both methods are as follows:

1.	 Since B/G ratio of Be1Zn3Te4 alloy obtained through X-ray and Castep is larger than 
1.75; other flexible alloys have brittle property.

2.	 Since Poisson’s ratio (v) values are larger than 0.25, they have an ionic property. 
3.	 Since Poisson’ ratio (v) is between 0.25 and 0.5, interatomic forces are central in these 

compounds. 
4.	 If Poisson’s ratio is v>1/3, the material act flexibly; if v < 1/3; then the material acts in a 

brittle way. According to this information, Be1Zn3S4 other flexible alloys demonstrate a 
brittle property within both methods.

5.	 The calculated results show that all alloys have a direct band transition and semiconductor 
property.
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