531 research outputs found

    Shape models and physical properties of asteroids

    Full text link
    Despite the large amount of high quality data generated in recent space encounters with asteroids, the majority of our knowledge about these objects comes from ground based observations. Asteroids travelling in orbits that are potentially hazardous for the Earth form an especially interesting group to be studied. In order to predict their orbital evolution, it is necessary to investigate their physical properties. This paper briefly describes the data requirements and different techniques used to solve the lightcurve inversion problem. Although photometry is the most abundant type of observational data, models of asteroids can be obtained using various data types and techniques. We describe the potential of radar imaging and stellar occultation timings to be combined with disk-integrated photometry in order to reveal information about physical properties of asteroids.Comment: From Assessment and Mitigation of Asteroid Impact Hazards boo

    The indigenous arbuscular mycorrhizal fungal colonisation potential in potato roots is affected by agricultural treatments

    Get PDF
    ArticlesThere is an urgent need to develop novel approaches to enhance sustainable agriculture while not reducing cr op yields. Arbuscular mycorrhizal (AM) fungi establish symbiotic associations with most crop plants improving plant performance and soil health. This study investigated the extent of colonisation of potato roots by indigenous AM fungi in the arable soil under conventional and organic farming systems. Potato roots had greater AM fungal colonisation levels under organic than conventional farming, though in general, root colonisation levels were extremely low in both farming systems . Pota to root AM fungal colonisation was lower with higher soil P content and higher with higher annual C input. Trap plant root AM fungal colonisation was considerably higher than in field potato roots and showed that soil mycorrhizal inoculum potential was hig her in organic than in conventional farming. Thus, the positive impact of manure application in organic fields to the potato AM fungal colonisation can be explained by previous higher total annual C fresh organic matter input and lower soil P content under treatment. Furthermore, the natural AM fungal abundance in the soil was sufficient to colonise trap plant roots, suggesting a low mycorrhizal dependence of the studied potato cultivar

    BBC Television ‘The Experiment’ – report of the independent ethics panel

    Get PDF
    Report by the six-person ‘Independent Ethics Panel’ as Chaired by MP Lembik Opik on the BBC Prison Experiment, conducted by Professor Alex Haslam (Exeter University) and Professor Steve Reicher (St Andrews University) to oversee the day-to-day running of the experiment and safeguard participant interests and wellbeing. BBC (October 2001 to May 2002)

    Simulations of the Population of Centaurs I: The Bulk Statistics

    Get PDF
    Large-scale simulations of the Centaur population are carried out. The evolution of 23328 particles based on the orbits of 32 well-known Centaurs is followed for up to 3 Myr in the forward and backward direction under the influence of the 4 massive planets. The objects exhibit a rich variety of dynamical behaviour with half-lives ranging from 540 kyr (1996 AR20) to 32 Myr (2000 FZ53). The mean half-life of the entire sample of Centaurs is 2.7 Myr. The data are analyzed using a classification scheme based on the controlling planets at perihelion and aphelion, previously given in Horner et al (2003). Transfer probabilities are computed and show the main dynamical pathways of the Centaur population. The total number of Centaurs with diameters larger than 1 km is estimated as roughly 44300, assuming an inward flux of one new short-period comet every 200 yrs. The flux into the Centaur region from the Edgeworth-Kuiper belt is estimated to be 1 new object every 125 yrs. Finally, the flux from the Centaur region to Earth-crossing orbits is 1 new Earth-crosser every 880 yrsComment: 15 pages, 2 figures, MNRAS in pres

    Hazardous near Earth asteroid mitigation campaign planning based on uncertain information on fundamental asteroid characteristics

    Get PDF
    Given a limited warning time, an asteroid impact mitigation campaign would hinge on uncertainty-based information consisting of remote observational data of the identified Earth-threatening object, general knowledge of near-Earth asteroids (NEAs), and engineering judgment. Due to these ambiguities, the campaign credibility could be profoundly compromised. It is therefore imperative to comprehensively evaluate the inherent uncertainty in deflection and plan the campaign accordingly to ensure successful mitigation. This research demonstrates dual-deflection mitigation campaigns consisting of primary (instantaneous/quasi-instantaneous) and secondary (slow-push) deflection missions, where both deflection efficiency and campaign credibility are taken into account. The results of the dual-deflection campaign analysis show that there are trade-offs between the competing aspects: the launch cost, mission duration, deflection distance, and the confidence in successful deflection. The design approach is found to be useful for multi-deflection campaign planning, allowing us to select the best possible combination of missions from a catalogue of campaign options, without compromising the campaign credibility

    Generalized "Quasi-classical" Ground State for an Interacting Two Level System

    Full text link
    We treat a system (a molecule or a solid) in which electrons are coupled linearly to any number and type of harmonic oscillators and which is further subject to external forces of arbitrary symmetry. With the treatment restricted to the lowest pair of electronic states, approximate "vibronic" (vibration-electronic) ground state wave functions are constructed having the form of simple, closed expressions. The basis of the method is to regard electronic density operators as classical variables. It extends an earlier "guessed solution", devised for the dynamical Jahn-Teller effect in cubic symmetry, to situations having lower (e.g., dihedral) symmetry or without any symmetry at all. While the proposed solution is expected to be quite close to the exact one, its formal simplicity allows straightforward calculations of several interesting quantities, like energies and vibronic reduction (or Ham) factors. We calculate for dihedral symmetry two different qq-factors ("qzq_z" and "qxq_x") and a pp-factor. In simplified situations we obtain p=qz+qx1p=q_z +q_x -1. The formalism enables quantitative estimates to be made for the dynamical narrowing of hyperfine lines in the observed ESR spectrum of the dihedral cyclobutane radical cation.Comment: 28 pages, 4 figure

    Aligning molecular studies of mycorrhizal fungal diversity with ecologically important levels of diversity in ecosystems.

    Get PDF
    Arbuscular mycorrhizal fungi (AMF) occur in the roots of most plants and are an ecologically important component of the soil microbiome. Richness of AMF taxa is a strong driver of plant diversity and productivity, thus providing a rationale for characterizing AMF diversity in natural ecosystems. Consequently, a large number of molecular studies on AMF community composition are currently underway. Most published studies, at best, only address species or genera-level resolution. However, several experimental studies indicate that variation in plant performance is large among plants colonised by different individuals of one AMF species. Thus, there is a potential disparity between how molecular community ecologists are currently describing AMF diversity and the level of AMF diversity that may actually be ecologically relevant. We propose a strategy to find many polymorphic loci that can define within-species genetic variability within AMF, or at any level of resolution desired within the Glomermycota. We propose that allele diversity at the intraspecific level could then be measured for target AMF groups, or at other levels of resolution, in environmental DNA samples. Combining the use of such markers with experimental studies on AMF diversity would help to elucidate the most important level(s) of AMF diversity in plant communities. Our goal is to encourage ecologists who are trying to explain how mycorrhizal fungal communities are structured to take an approach that could also yield meaningful information that is relevant to the diversity, functioning and productivity of ecosystems

    Topological Phases near a Triple Degeneracy

    Get PDF
    We study the pattern of three state topological phases that appear in systems with real Hamiltonians and wave functions. We give a simple geometric construction for representing these phases. We then apply our results to understand previous work on three state phases. We point out that the ``mirror symmetry'' of wave functions noticed in microwave experiments can be simply understood in our framework.Comment: 4 pages, 1 figure, to appear in Phys. Rev. Let

    Spin Driven Jahn-Teller Distortion in a Pyrochlore system

    Full text link
    The ground-state properties of the spin-1 antiferromagnetic Heisenberg model on the corner-sharing tetrahedra, pyrochlore lattice, is investigated. By breaking up each spin into a pair of 1/2-spins, the problem is reduced to the equivalent one of the spin-1/2 tetrahedral network in analogy with the valence bond solid state in one dimension. The twofold degeneracy of the spin-singlets of a tetrahedron is lifted by a Jahn-Teller mechanism, leading to a cubic to tetragonal structural transition. It is proposed that the present mechanism is responsible for the phase transition observed in the spin-1 spinel compounds ZnV2_2O4_4 and MgV2_2O4_4.Comment: 4 pages, 3 eps figures, REVTeX, to appear in Phys. Rev. Let

    Finding the trigger to Iapetus' odd global albedo pattern: Dynamics of dust from Saturn's irregular satellites

    Full text link
    The leading face of Saturn's moon Iapetus, Cassini Regio, has an albedo only one tenth that on its trailing side. The origin of this enigmatic dichotomy has been debated for over forty years, but with new data, a clearer picture is emerging. Motivated by Cassini radar and imaging observations, we investigate Soter's model of dark exogenous dust striking an originally brighter Iapetus by modeling the dynamics of the dark dust from the ring of the exterior retrograde satellite Phoebe under the relevant perturbations. In particular, we study the particles' probabilities of striking Iapetus, as well as their expected spatial distribution on the Iapetian surface. We find that, of the long-lived particles (greater than about 5 microns), most particle sizes (greater than about 10 microns) are virtually certain to strike Iapetus, and their calculated distribution on the surface matches up well with Cassini Regio's extent in its longitudinal span. The satellite's polar regions are observed to be bright, presumably because ice is deposited there. Thus, in the latitudinal direction we estimate polar dust deposition rates to help constrain models of thermal migration invoked to explain the bright poles (Spencer & Denk 2010). We also analyze dust originating from other irregular outer moons, determining that a significant fraction of that material will eventually coat Iapetus--perhaps explaining why the spectrum of Iapetus' dark material differs somewhat from that of Phoebe. Finally we track the dust particles that do not strike Iapetus, and find that most land on Titan, with a smaller fraction hitting Hyperion. As has been previously conjectured, such exogenous dust, coupled with Hyperion's chaotic rotation, could produce Hyperion's roughly isotropic, moderate-albedo surface.Comment: Accepted for publication in Icaru
    corecore