31 research outputs found

    The Transition between Telomerase and ALT Mechanisms in Hodgkin Lymphoma and Its Predictive Value in Clinical Outcomes

    Get PDF
    International audienceBackground: We analyzed telomere maintenance mechanisms (TMMs) in lymph node samples from HL patients treated with standard therapy. The TMMs correlated with clinical outcomes of patients. Materials and Methods: Lymph node biopsies obtained from 38 HL patients and 24 patients with lymphadenitis were included in this study. Seven HL cell lines were used as in vitro models. Telomerase activity (TA) was assessed by TRAP assay and verified through hTERT immunofluorescence expression; alternative telomere lengthening (ALT) was also assessed, along with EBV status. Results: Both TA and ALT mechanisms were present in HL lymph nodes. Our findings were reproduced in HL cell lines. The highest levels of TA were expressed in CD30−/CD15− cells. Small cells were identified with ALT and TA. Hodgkin and Reed Sternberg cells contained high levels of PML bodies, but had very low hTERT expression. There was a significant correlation between overall survival (p < 10−3), event-free survival (p < 10−4), and freedom from progression (p < 10−3) and the presence of an ALT profile in lymph nodes of EBV+ patients. Conclusion: The presence of both types of TMMs in HL lymph nodes and in HL cell lines has not previously been reported. TMMs correlate with the treatment outcome of EBV+ HL patients

    Dose assessment intercomparisons within the RENEB network using G0-lymphocyte prematurely condensed chromosomes (PCC assay)

    Get PDF
    Purpose: Dose assessment intercomparisons within the RENEB network were performed for triage biodosimetry analyzing G0-lymphocyte PCC for harmonization, standardization and optimization of the PCC assay. Materials and methods: Comparative analysis among different partners for dose assessment included shipment of PCC-slides and captured images to construct dose-response curves for up to 6 Gy c-rays. Accident simulation exercises were performed to assess the suitability of the PCC assay by detecting speed of analysis and minimum number of cells required for categorization of potentially exposed individuals. Results: Calibration data based on Giemsa-stained fragments in excess of 46 PCC were obtained by different partners using galleries of PCC images for each dose-point. Mean values derived from all scores yielded a linear dose-response with approximately 4 excess-fragments/cell/Gy. To unify scoring criteria, exercises were carried out using coded PCC-slides and/or coded irradiated blood samples. Analysis of samples received 24 h post-exposure was successfully performed using Giemsa staining (1 excess-fragment/cell/Gy) or centromere/telomere FISH-staining for dicentrics. Conclusions: Dose assessments by RENEB partners using appropriate calibration curves were mostly in good agreement. The PCC assay is quick and reliable for whole- or partial-body triage biodosimetry by scoring excess-fragments or dicentrics in G0-lymphocytes. Particularly, analysis of Giemsa-stained excess PCC-fragments is simple, inexpensive and its automation could increase throughput and scoring objectivity of the PCC assay

    RENEB intercomparison exercises analyzing micronuclei (Cytokinesis-block Micronucleus Assay)

    Get PDF
    Purpose: In the framework of the ‘Realizing the European Network of Biodosimetry’ (RENEB) project, two intercomparison exercises were conducted to assess the suitability of an optimized version of the cytokinesis-block micronucleus assay, and to evaluate the capacity of a large laboratory network performing biodosimetry for radiation emergency triages. Twelve European institutions participated in the first exercise, and four non-RENEB labs were added in the second one. Materials and methods: Irradiated blood samples were shipped to participating labs, whose task was to culture these samples and provide a blind dose estimate. Micronucleus analysis was performed by automated, semi-automated and manual procedures. Results: The dose estimates provided by network laboratories were in good agreement with true administered doses. The most accurate estimates were reported for low dose points (== 2.7 Gy) a larger variation in estimates was observed, though in the second exercise the number of acceptable estimates increased satisfactorily. Higher accuracy was achieved with the semi-automated method. Conclusion: The results of the two exercises performed by our network demonstrate that the micronucleus assay is a useful tool for large-scale radiation emergencies, and can be successfully implemented within a large network of laboratories

    Integration of new biological and physical retrospective dosimetry methods into EU emergency response plans : joint RENEB and EURADOS inter-laboratory comparisons

    Get PDF
    Purpose: RENEB, 'Realising the European Network of Biodosimetry and Physical Retrospective Dosimetry,' is a network for research and emergency response mutual assistance in biodosimetry within the EU. Within this extremely active network, a number of new dosimetry methods have recently been proposed or developed. There is a requirement to test and/or validate these candidate techniques and inter-comparison exercises are a well-established method for such validation. Materials and methods: The authors present details of inter-comparisons of four such new methods: dicentric chromosome analysis including telomere and centromere staining; the gene expression assay carried out in whole blood; Raman spectroscopy on blood lymphocytes, and detection of radiation induced thermoluminescent signals in glass screens taken from mobile phones. Results: In general the results show good agreement between the laboratories and methods within the expected levels of uncertainty, and thus demonstrate that there is a lot of potential for each of the candidate techniques. Conclusions: Further work is required before the new methods can be included within the suite of reliable dosimetry methods for use by RENEB partners and others in routine and emergency response scenarios

    Establishment and Characterization of a Reliable Xenograft Model of Hodgkin Lymphoma Suitable for the Study of Tumor Origin and the Design of New Therapies

    No full text
    To identify the cells responsible for the initiation and maintenance of Hodgkin lymphoma (HL) cells, we have characterized a subpopulation of HL cells grown in vitro and in vivo with the aim of establishing a reliable and robust animal model for HL. To validate our model, we challenged the tumor cells in vivo by injecting the alkylating histone-deacetylase inhibitor, EDO-S101, a salvage regimen for HL patients, into xenografted mice. Methodology: Blood lymphocytes from 50 HL patients and seven HL cell lines were used. Immunohistochemistry, flow cytometry, and cytogenetics analyses were performed. The in vitro and in vivo effects of EDO-S101 were assessed. Results: We have successfully determined conditions for in vitro amplification and characterization of the HL L428-c subline, containing a higher proportion of CD30&minus;/CD15&minus; cells than the parental L428 cell line. This subline displayed excellent clonogenic potential and reliable reproducibility upon xenografting into immunodeficient NOD-SCID-gamma (&minus;/&minus;)(NSG) mice. Using cell sorting, we demonstrate that CD30&minus;/CD15&minus; subpopulations can gain the phenotype of the L428-c cell line in vitro. Moreover, the human cells recovered from the seventh week after injection of L428-c cells into NSG mice were small cells characterized by a high frequency of CD30&minus;/CD15&minus; cells. Cytogenetic analysis demonstrated that they were diploid and showed high telomere instability and telomerase activity. Accordingly, chromosomal instability emerged, as shown by the formation of dicentric chromosomes, ring chromosomes, and breakage/fusion/bridge cycles. Similarly, high telomerase activity and telomere instability were detected in circulating lymphocytes from HL patients. The beneficial effect of the histone-deacetylase inhibitor EDO-S101 as an anti-tumor drug validated our animal model. Conclusion: Our HL animal model requires only 103 cells and is characterized by a high survival/toxicity ratio and high reproducibility. Moreover, the cells that engraft in mice are characterized by a high frequency of small CD30&minus;/CD15&minus; cells exhibiting high telomerase activity and telomere dysfunction

    EFFECT OF COMPUTED TOMOGRAPHY (CT) SCAN EXPOSURE ON HEMATOLOGICAL PARAMETERS

    No full text
    Background and aims: CT scan is more used in diagnosis; however, this examined was delivered a low dose estimated approximately to 50 mGy. In this study, the impact of CT scan exposure on hematological parameters for Congo-Brazzaville patients was analyzed. Methods: Blood samples have been obtained from 61 patients including 23 young patients (&lt;17 years). Blood sample was obtained before and 24h after CT-scan exposure from three different hospitals Congo-Brazzaville. 30 healthy donors have been included as a control. Hematological parameters have been analyzed using software. Results: Significant decrease of red blood and hemoglobin were observed after 24 h of CT scan exposure for all patients (p=0.0002 and p=0.0004 respectively). Significant increase of white blood and granulocyte were observed only in adult patients (p=0.0057 and p=0.011 respectively). Significant correlation was observed between the Abdominal-Pleven CT-scan and the variation of white blood and granulocytes. Interestingly, decrease of lymphocytes was observed in adult patients and lymphocyte increase was detected in young patients. Conclusion: We were demonstrated for the first time the variation of hematological parameters after exposure to be very lower doses such as CT-Scan doses. These variations could be reflected inflammatory reactions. Additional analysis can be performed for the validation of these data using a large cohort.                          Peer Review History: Received: 23 June 2023; Revised: 18 July; Accepted: 25 August, Available online: 15 September 2023 Academic Editor: Prof. Dr. Gorkem Dulger, Duzce University, Turkey, [email protected] Received file:                             Reviewer's Comments: Average Peer review marks at initial stage: 5.0/10 Average Peer review marks at publication stage: 7.0/10 Reviewers: Dr. Sheikh Abdul Khaliq, Department of Pharmacy Practice, Faculty of Pharmacy, Hamdard University, Karachi, Pakistan, [email protected] Prof. Hassan A.H. Al-Shamahy, Sana'a University, Yemen, [email protected] Ali Jaber, Laboratory for Research and Development of Medicines and Natural Products, RDMPN, Faculty of Pharmacy, Lebanese University, Beirut, Lebanon, [email protected]

    Chromosomal Instability in Hodgkin Lymphoma: An In-Depth Review and Perspectives

    No full text
    The study of Hodgkin lymphoma (HL), with its unique microenvironment and long-term follow-up, has provided exceptional insights into several areas of tumor biology. Findings in HL have not only improved our understanding of human carcinogenesis, but have also pioneered its translation into the clinics. HL is a successful paradigm of modern treatment strategies. Nonetheless, approximately 15–20% of patients with advanced stage HL still die following relapse or progressive disease and a similar proportion of patients are over-treated, leading to treatment-related late sequelae, including solid tumors and organ dysfunction. The malignant cells in HL are characterized by a highly altered genomic landscape with a wide spectrum of genomic alterations, including somatic mutations, copy number alterations, complex chromosomal rearrangements, and aneuploidy. Here, we review the chromosomal instability mechanisms in HL, starting with the cellular origin of neoplastic cells and the mechanisms supporting HL pathogenesis, focusing particularly on the role of the microenvironment, including the influence of viruses and macrophages on the induction of chromosomal instability in HL. We discuss the emerging possibilities to exploit these aberrations as prognostic biomarkers and guides for personalized patient management

    Extended lifespan and improved genome stability in HepaRG-derived cell lines through reprogramming by high-density stress

    No full text
    International audienceThe characteristics and fate of cancer cells partly depend on their environmental stiffness, i.e., the local mechanical cues they face. HepaRG progenitors are liver carcinoma cells exhibiting transdifferentiation properties; however, the underlying mechanisms remain unknown. To evaluate the impact of external physical forces mimicking the tumor microenvironment, we seeded them at very high density for 20 h, keeping the cells round and unanchored to the substrate. Applied without corticoids, spatial confinement due to very high density induced reprogramming of HepaRG cells into stable replicative stem-like cells after replating at normal density. Redifferentiation of these stem-like cells into cells very similar to the original HepaRG cells was then achieved using the same stress but in the presence of corticoids. This demonstrates that the cells retained the memory required to run the complete hepatic differentiation program, after bypassing the Hayflick limit twice. We show that physical stress improved chromosome quality and genomic stability, through greater efficiency of DNA repair and restoration of telomerase activity, thus enabling cells to escape progression to a more aggressive cancer state. We also show the primary importance of high-density seeding, possibly triggering compressive stress, in these processes, rather than that of cell roundness or intracellular tensional signals. The HepaRG-derived lines established here considerably extend the lifespan and availability of this surrogate cell system for mature human hepatocytes. External physical stress is a promising way to create a variety of cell lines, and it paves the way for the development of strategies to improve cancer prognosis

    Modeling Global Genomic Instability in Chronic Myeloid Leukemia (CML) Using Patient-Derived Induced Pluripotent Stem Cells (iPSCs)

    No full text
    Methods: We used a patient-specific induced pluripotent stem cell (iPSC) line treated with the mutagenic agent N-ethyl-N-nitrosourea (ENU). Genomic instability was validated using γ-H2AX and micronuclei assays and CGH array for genomic events. Results: An increased number of progenitors (x5-Fold), which proliferated in liquid cultures with a blast cell morphology, was observed in the mutagenized condition as compared to the unmutagenized one. CGH array performed for both conditions in two different time points reveals several cancer genes in the ENU-treated condition, some known to be altered in leukemia (BLM, IKZF1, NCOA2, ALK, EP300, ERG, MKL1, PHF6 and TET1). Transcriptome GEO-dataset GSE4170 allowed us to associate 125 of 249 of the aberrations that we detected in CML-iPSC with the CML progression genes already described during progression from chronic and AP to BC. Among these candidates, eleven of them have been described in CML and related to tyrosine kinase inhibitor resistance and genomic instability. Conclusions: These results demonstrated that we have generated, for the first time to our knowledge, an in vitro genetic instability model, reproducing genomic events described in patients with BC
    corecore