299 research outputs found

    Development of a 4-GEM large-size prototype for the ALICE TPC upgrade

    Get PDF

    Measuring the stability of GEM detectors against electrical discharges

    Get PDF

    Human white adipose tissue vasculature contains endothelial colony-forming cells with robust in vivo vasculogenic potential

    Get PDF
    Epub ahead of print.-- The final publication is available at link.springer.comBlood-derived endothelial colony-forming cells (ECFCs) have robust vasculogenic potential that can be exploited to bioengineer long-lasting human vascular networks in vivo. However, circulating ECFCs are exceedingly rare in adult peripheral blood. Because the mechanism by which ECFCs are mobilized into circulation is currently unknown, the reliability of peripheral blood as a clinical source of ECFCs remains a concern. Thus, there is a need to find alternative sources of autologous ECFCs. Here we aimed to determine whether ECFCs reside in the vasculature of human white adipose tissue (WAT) and to evaluate if WAT-derived ECFCs (watECFCs) have equal clinical potential to blood-derived ECFCs. We isolated the complete endothelial cell (EC) population from intact biopsies of normal human subcutaneous WAT by enzymatic digestion and selection of CD31+ cells. Subsequently, we extensively compared WAT-derived EC phenotype and functionality to bonafide ECFCs derived from both umbilical cord blood and adult peripheral blood. We demonstrated that human WAT is indeed a dependable source of ECFCs with indistinguishable properties to adult peripheral blood ECFCs, including hierarchical clonogenic ability, large expansion potential, stable endothelial phenotype, and robust in vivo blood vessel-forming capacity. Considering the unreliability and low rate of occurrence of ECFCs in adult blood and that biopsies of WAT can be obtained with minimal intervention in an ambulatory setting, our results indicate WAT as a more practical alternative to obtain large amounts of readily available autologous ECFCs for future vascular cell therapies.This work was supported by a National Institutes of Health Grant (R00EB009096, J. M.-M).Peer reviewe

    Skyrmion Lattice in a Doped Semiconductor

    Full text link
    We report a comprehensive small angle neutron scattering study (SANS) of the magnetic phase diagram of the doped semiconductor Fe_{1-x}Co_{x}Si for x=0.2 and 0.25. For magnetic field parallel to the neutron beam we observe a six-fold intensity pattern under field-cooling, which identifies the A-phase of Fe_{1-x}Co_{x}Si as a skyrmion lattice. The regime of the skyrmion lattice is highly hysteretic and extents over a wide temperature range, consistent with the site disorder of the Fe and Co atoms. Our study identifies Fe_{1-x}Co_{x}Si is a second material after MnSi in which a skyrmion lattice forms and establishes that skyrmion lattices may also occur in strongly doped semiconductors

    Inflammasome activation in neutrophils of patients with severe COVID-19

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Aymonnier, K., Ng, J., Fredenburgh, L. E., Zambrano-Vera, K., Muenzer, P., Gutch, S., Fukui, S., Desjardins, M., Subramaniam, M., Baron, R. M., Raby, B. A., Perrella, M. A., Lederer, J. A., & Wagner, D. D. Inflammasome activation in neutrophils of patients with severe COVID-19. Blood Advances, 6(7), (2022): 2001–2013, https://doi.org/10.1182/bloodadvances.2021005949.Infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) engages the inflammasome in monocytes and macrophages and leads to the cytokine storm in COVID-19. Neutrophils, the most abundant leukocytes, release neutrophil extracellular traps (NETs), which have been implicated in the pathogenesis of COVID-19. Our recent study shows that activation of the NLRP3 inflammasome is important for NET release in sterile inflammation. However, the role of neutrophil inflammasome formation in human disease is unknown. We hypothesized that SARS-CoV-2 infection may induce inflammasome activation in neutrophils. We also aimed to assess the localization of inflammasome formation (ie, apoptosis-associated speck-like protein containing a CARD [ASC] speck assembly) and timing relative to NETosis in stimulated neutrophils by real-time video microscopy. Neutrophils isolated from severe COVID-19 patients demonstrated that ∼2% of neutrophils in both the peripheral blood and tracheal aspirates presented ASC speck. ASC speck was observed in neutrophils with an intact poly-lobulated nucleus, suggesting early formation during neutrophil activation. Additionally, 40% of nuclei were positive for citrullinated histone H3, and there was a significant correlation between speck formation and nuclear histone citrullination. Time-lapse microscopy in lipopolysaccharide -stimulated neutrophils from fluorescent ASC reporter mice showed that ASC speck formed transiently and at the microtubule organizing center long before NET release. Our study shows that ASC speck is present in neutrophils from COVID-19 patients with respiratory failure and that it forms early in NETosis. Our findings suggest that inhibition of neutrophil inflammasomes may be beneficial in COVID-19.P.M. received an Individual Marie Skłodowska-Curie Actions fellowship by the European Commission (796365 - COAGULANT). This work was supported by the National Institutes of Health (NIH)/Research Program Award grant R35 HL135765 (D.W.), by the NIH/National Heart, Lung, and Blood Institute grant T32 HL007633-35 (J.N.), and by the NIH/National Institute of Allergy and Infectious Diseases grant U01AI138318 (J.L and M.P); by the Massachusetts Consortium on Pathogen Readiness (MassCPR) Evergrande COVID‐19 Response Fund Award to B.R.; and by a generous gift to D.W. from the Steven Berzin family

    A Development Environment for Visual Physics Analysis

    Full text link
    The Visual Physics Analysis (VISPA) project integrates different aspects of physics analyses into a graphical development environment. It addresses the typical development cycle of (re-)designing, executing and verifying an analysis. The project provides an extendable plug-in mechanism and includes plug-ins for designing the analysis flow, for running the analysis on batch systems, and for browsing the data content. The corresponding plug-ins are based on an object-oriented toolkit for modular data analysis. We introduce the main concepts of the project, describe the technical realization and demonstrate the functionality in example applications

    Production of Sigma{\pm}pi?pK+ in p+p reactions at 3.5 GeV beam energy

    Full text link
    We study the production of Sigma^+-pi^+-pK^+ particle quartets in p+p reactions at 3.5 GeV kinetic beam energy. The data were taken with the HADES experiment at GSI. This report evaluates the contribution of resonances like Lambda(1405$, Sigma(1385)^0, Lambda(1520), Delta(1232), N^* and K^*0 to the Sigma^+- pi^-+ p K+ final state. The resulting simulation model is compared to the experimental data in several angular distributions and it shows itself as suitable to evaluate the acceptance corrections properly.Comment: 15 pages, 5 figure

    Strange meson production in Al+Al collisions at 1.9A GeV

    Full text link
    The production of K+^+, K^- and φ\varphi(1020) mesons is studied in Al+Al collisions at a beam energy of 1.9A GeV which is close or below the production threshold in NN reactions. Inverse slopes, anisotropy parameters, and total emission yields of K±^{\pm} mesons are obtained. A comparison of the ratio of kinetic energy distributions of K^- and K+^+ mesons to the HSD transport model calculations suggests that the inclusion of the in-medium modifications of kaon properties is necessary to reproduce the ratio. The inverse slope and total yield of ϕ\phi mesons are deduced. The contribution to K^- production from ϕ\phi meson decays is found to be [17 ±\pm 3 (stat) 7+2^{+2}_{-7} (syst)] %. The results are in line with previous K±^{\pm} and ϕ\phi data obtained for different colliding systems at similar incident beam energies.Comment: 16 pages, 11 figure
    corecore