8 research outputs found

    Genome-Wide Association Analysis for Severity of Coronary Artery Disease Using the Gensini Scoring System

    Get PDF
    Coronary artery disease (CAD) has a complex etiology involving numerous environmental and genetic factors of disease risk. To date, the genetic 9p21 locus represents the most robust genetic finding for prevalent and incident CAD. However, limited information is available on the genetic background of the severity and distribution of CAD. CAD manifests itself as stable CAD or acute coronary syndrome. The Gensini score quantifies the extent CAD but requires coronary angiography. Here, we aimed to identify novel genetic variants associated with Gensini score severity and distribution of CAD. A two-stage approach including a discovery and a replication stage was used to assess genetic variants. In the discovery phase, a meta-analysis of genome-wide association data of 4,930 CAD-subjects assessed by the Gensini score was performed. Selected single nucleotide polymorphisms (SNPs) were replicated in 2,283 CAD-subjects by de novo genotyping. We identified genetic loci located on chromosome 2 and 9 to be associated with Gensini score severity and distribution of CAD in the discovery stage. Although the loci on chromosome 2 could not be replicated in the second stage, the known CAD-locus on chromosome 9p21, represented by rs133349, was identified and, thus, was confirmed as risk locus for CAD severity

    Relations between lipoprotein(a) concentrations, LPA genetic variants, and the risk of mortality in patients with established coronary heart disease: a molecular and genetic association study

    Get PDF
    Background: Lipoprotein(a) concentrations in plasma are associated with cardiovascular risk in the general population. Whether lipoprotein(a) concentrations or LPA genetic variants predict long-term mortality in patients with established coronary heart disease remains less clear. Methods: We obtained data from 3313 patients with established coronary heart disease in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. We tested associations of tertiles of lipoprotein(a) concentration in plasma and two LPA single-nucleotide polymorphisms ([SNPs] rs10455872 and rs3798220) with all-cause mortality and cardiovascular mortality by Cox regression analysis and with severity of disease by generalised linear modelling, with and without adjustment for age, sex, diabetes diagnosis, systolic blood pressure, BMI, smoking status, estimated glomerular filtration rate, LDL-cholesterol concentration, and use of lipid-lowering therapy. Results for plasma lipoprotein(a) concentrations were validated in five independent studies involving 10 195 patients with established coronary heart disease. Results for genetic associations were replicated through large-scale collaborative analysis in the GENIUS-CHD consortium, comprising 106 353 patients with established coronary heart disease and 19 332 deaths in 22 studies or cohorts. Findings: The median follow-up was 9·9 years. Increased severity of coronary heart disease was associated with lipoprotein(a) concentrations in plasma in the highest tertile (adjusted hazard radio [HR] 1·44, 95% CI 1·14–1·83) and the presence of either LPA SNP (1·88, 1·40–2·53). No associations were found in LURIC with all-cause mortality (highest tertile of lipoprotein(a) concentration in plasma 0·95, 0·81–1·11 and either LPA SNP 1·10, 0·92–1·31) or cardiovascular mortality (0·99, 0·81–1·2 and 1·13, 0·90–1·40, respectively) or in the validation studies. Interpretation: In patients with prevalent coronary heart disease, lipoprotein(a) concentrations and genetic variants showed no associations with mortality. We conclude that these variables are not useful risk factors to measure to predict progression to death after coronary heart disease is established. Funding: Seventh Framework Programme for Research and Technical Development (AtheroRemo and RiskyCAD), INTERREG IV Oberrhein Programme, Deutsche Nierenstiftung, Else-Kroener Fresenius Foundation, Deutsche Stiftung für Herzforschung, Deutsche Forschungsgemeinschaft, Saarland University, German Federal Ministry of Education and Research, Willy Robert Pitzer Foundation, and Waldburg-Zeil Clinics Isny

    Genome-Wide Association Analysis for Severity of Coronary Artery Disease Using the Gensini Scoring System

    Get PDF
    Coronary artery disease (CAD) has a complex etiology involving numerous environmental and genetic factors of disease risk. To date, the genetic 9p21 locus represents the most robust genetic finding for prevalent and incident CAD. However, limited information is available on the genetic background of the severity and distribution of CAD. CAD manifests itself as stable CAD or acute coronary syndrome. The Gensini score quantifies the extent CAD but requires coronary angiography. Here, we aimed to identify novel genetic variants associated with Gensini score severity and distribution of CAD. A two-stage approach including a discovery and a replication stage was used to assess genetic variants. In the discovery phase, a meta-analysis of genome-wide association data of 4,930 CAD-subjects assessed by the Gensini score was performed. Selected single nucleotide polymorphisms (SNPs) were replicated in 2,283 CAD-subjects by de novo genotyping. We identified genetic loci located on chromosome 2 and 9 to be associated with Gensini score severity and distribution of CAD in the discovery stage. Although the loci on chromosome 2 could not be replicated in the second stage, the known CAD-locus on chromosome 9p21, represented by rs133349, was identified and, thus, was confirmed as risk locus for CAD severity

    In vitro profiling of volatile organic compounds released by Simpson-Golabi-Behmel syndrome adipocytes

    Get PDF
    Breath analysis offers a non-invasive and rapid diagnostic method for detecting various volatile organic compounds that could be indicators for different diseases, particularly metabolic disorders including type 2 diabetes mellitus. The development of type 2 diabetes mellitus is closely linked to metabolic dysfunction of adipose tissue and adipocytes. However, the VOC profile of human adipocytes has not yet been investigated. Gas chromatography with mass spectrometric detection and head-space needle trap extraction (two-bed Carbopack X/Carboxen 1000 needle traps) were applied to profile VOCs produced and metabolised by human Simpson Golabi Behmel Syndrome adipocytes. In total, sixteen compounds were identified to be related to the metabolism of the cells. Four sulphur compounds (carbon disulphide, dimethyl sulphide, ethyl methyl sulphide and dimethyl disulphide), three heterocyclic compounds (2-ethylfuran, 2-methyl-5-(methyl-thio)-furan, and 2-pentylfuran), two ketones (acetone and 2-pentanone), two hydrocarbons (isoprene and n-heptane) and one ester (ethyl acetate) were produced, and four aldehydes (2-methyl-propanal, butanal, pentanal and hexanal) were found to be consumed by the cells of interest. This study presents the first profile of VOCs formed by human adipocytes, which may reflect the activity of the adipose tissue enzymes and provide evidence of their active role in metabolic regulation. Our data also suggest that a previously reported increase of isoprene and sulphur compounds in diabetic patients may be explained by their production by adipocytes. Moreover, the unique features of this profile, including a high emission of dimethyl sulphide and the production of furan-containing VOCs, increase our knowledge about metabolism in adipose tissue and provide diagnostic potential for future applications

    Maturation of tertiary lymphoid structures and recurrence of stage II and III colorectal cancer

    Get PDF
    Tertiary lymphoid structures (TLS) are associated with favorable outcome in non-metastatic colorectal carcinoma (nmCRC), but the dynamics of TLS maturation and its association with effective anti-tumor immune surveillance in nmCRC are unclear. Here, we hypothesized that not only the number of TLS but also their composition harbors information on recurrence risk in nmCRC. In a comprehensive molecular, tissue, laboratory, and clinical analysis of 109 patients with stage II/III nmCRC, we assessed TLS numbers and degree of maturation in surgical specimens by multi-parameter immunofluorescence of follicular dendritic cell (FDC) and germinal center (GC) markers. TLS formed in most tumors and were significantly more prevalent in highly-microsatellite-instable (MSI-H) and/or BRAF-mutant nmCRC. We could distinguish three sequential TLS maturation stages which were characterized by increasing prevalence of FDCs and mature B-cells: [1] Early TLS, composed of dense lymphocytic aggregates without FDCs, [2] Primary follicle-like TLS, having FDCs but no GC reaction, and [3] Secondary follicle-like TLS, having an active GC reaction. A simple integrated TLS immunoscore reflecting these parameters identified a large subgroup of nmCRC patients with a very low risk of recurrence independently of clinical co-variables such as ECOG performance status, age, stage, and adjuvant chemotherapy. We conclude that (1) mismatch repair and BRAF mutation status are associated with the formation of TLS in nmCRC, (2) TLS formation in nmCRC follows sequential maturation steps, culminating in germinal center formation, and (3) this maturation process harbors important prognostic information on the risk of disease recurrence

    Lipid profiles of patients with manifest coronary versus peripheral atherosclerosis - is there a difference?

    No full text
    AIM Peripheral arterial disease (PAD) and coronary artery disease (CAD) are both caused by atherosclerosis. Serum lipids and lipoproteins are predictive of the development of atherosclerosis but it is not clear if they differ in the two manifestations PAD and CAD. We tested whether a more detailed characterization of the lipid and lipoprotein patterns of PAD and CAD allows a clear differentiation between the two atherosclerotic phenotypes. METHODS A cohort of 274 statin-naïve patients with either newly diagnosed imaging proven PAD (n = 89) or stable CAD (n = 185) was characterized using nuclear magnetic resonance- and liquid chromatography-tandem mass spectrometry-based advanced lipid and lipoprotein analysis. An independent cohort of 1239 patients with PAD and CAD was used for validation. RESULTS We found a significant difference in markers of inflammation as well as ceramide and phosphatidylcholine levels between PAD and CAD patients. In contrast, basic lipid markers including total cholesterol, LDL cholesterol, HDL cholesterol, lipoprotein(a) or detailed lipoprotein profiles did not differ significantly between PAD and CAD patients. Applying ratios and scores derived from ceramides and phosphatidylcholines further improved the discrimination between PAD and CAD. These significant differences were independent of body composition, from the status of smoking or T2DM, and also from apolipoprotein C-III and other inflammatory parameters which were different between CAD and PAD. CONCLUSION The present study clearly suggests that PAD and CAD differ in terms of their ceramide- and phosphatidylcholine-based lipid patterns but not in lipoprotein characteristics
    corecore