7,668 research outputs found
The Nature of Active Galactic Nuclei with Velocity Offset Emission Lines
We obtained Keck/OSIRIS near-IR adaptive optics-assisted integral-field
spectroscopy to probe the morphology and kinematics of the ionized gas in four
velocity-offset active galactic nuclei (AGNs) from the Sloan Digital Sky
Survey. These objects possess optical emission lines that are offset in
velocity from systemic as measured from stellar absorption features. At a
resolution of ~0.18", OSIRIS allows us to distinguish which velocity offset
emission lines are produced by the motion of an AGN in a dual supermassive
black hole system, and which are produced by outflows or other kinematic
structures. In three galaxies, J1018+2941, J1055+1520 and J1346+5228, the
spectral offset of the emission lines is caused by AGN-driven outflows. In the
remaining galaxy, J1117+6140, a counterrotating nuclear disk is observed that
contains the peak of Pa emission 0.2" from the center of the galaxy.
The most plausible explanation for the origin of this spatially and
kinematically offset peak is that it is a region of enhanced Pa
emission located at the intersection zone between the nuclear disk and the bar
of the galaxy. In all four objects, the peak of ionized gas emission is not
spatially coincident with the center of the galaxy as traced by the peak of the
near-IR continuum emission. The peaks of ionized gas emission are spatially
offset from the galaxy centers by 0.1"-0.4" (0.1-0.7 kpc). We find that the
velocity offset originates at the location of this peak of emission, and the
value of the offset can be directly measured in the velocity maps. The
emission-line ratios of these four velocity-offset AGNs can be reproduced only
with a mixture of shocks and AGN photoionization. Shocks provide a natural
explanation for the origin of the spatially and spectrally offset peaks of
ionized gas emission in these galaxies.Comment: 14 pages, 12 figures, accepted for publication in Ap
Correlation between Grafting Density and Confined Crystallization Behavior of Poly(ethylene glycol) Grafted to Silica
The interfacial interactions of polymer-nanoparticles have dramatical effects on the crystallization behavior of grafted polymers. In this study, methoxy polyethylene glycol (MPEG) (molecular weights 750, 2000 and 4000 g mol−1) was grafted onto amino-modified nanosized silica (SiO2-NH2) by the “grafting to” method. The effects of the grafting density and molecular weight on the confined crystallization of grafted MPEG (MPEG-g-SiO2) were systematically investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and wide-angle X-ray scattering (WAXS). It was found that confinement effects are stronger when lower molecular weights of grafted MPEG are employed. These grafted MPEG chains are more difficult to stretch out on SiO2-NH2 surfaces than when they are free in the bulk polymer. Both crystallization temperature (Tc) and crystallinity of grafted MPEG chains decrease with reductions of grafting density. Additionally, covalent bonding effects and interfacial interaction confinement effects are strengthened by the decrease in grafting density, leading to an increase in decomposition temperature and to the disappearance of the self-nucleation Domain (i.e., Domain II), when self-nucleation experiments are performed by DSC. Overall isothermal crystallization kinetics was studied by DSC and the results were analyzed with the Avrami equation. An Avrami index of n≈3 was obtained for neat MPEG (indicating that instantaneous spherulites are formed). However, in the case of MPEG-g-SiO2 with the lowest grafting density, the Avrami index of (n) was less than 1 (first order kinetics or lower), indicating that nucleation is the determining factor of the overall crystallization kinetics, a signature
for confined crystallization. At the same time, the crystallization from the melt for this MPEG-g-SiO2 with the lowest grafting density occurs at Tc
≈-30 ºC, a temperature close to the glass transition temperature (Tg) of MPEG, indicating that this confined MPEG crystallizes from homogeneous nuclei.This project was supported by the National Natural Science Foundation of China (21574141) and the Ministry of Science and Technology of China (2017YFE0117800). The authors gratefully acknowledge the funding of project BIODEST, Research and Innovation Staff Exchange (RISE) H2020-MSCA-RISE-2017-778092. The authors thank beamline BL16B1 (Shanghai Synchrotron Radiation Facility) for providing the beam time and helps during experiments
The Origin of Double-Peaked Narrow Lines in Active Galactic Nuclei III: Feedback from Biconical AGN Outflows
We apply an analytic Markov Chain Monte Carlo model to a sample of 18
AGN-driven biconical outflows that we identified from a sample of active
galaxies with double-peaked narrow emission lines at z < 0.1 in the Sloan
Digital Sky Survey. We find that 8/18 are best described as asymmetric bicones,
8/18 are nested bicones, and 2/18 are symmetric bicones. From the geometry and
kinematics of the models, we find that these moderate-luminosity AGN outflows
are large and energetic. The biconical outflows axes are randomly oriented with
respect to the photometric major axis of the galaxy, implying a randomly
oriented and clumpier torus to collimate the outflow, but the torus also allows
some radiation to escape equatorially. We find that 16/18 (89%) outflows are
energetic enough to drive a two-staged feedback process in their host galaxies.
All of these outflows geometrically intersect the photometric major axis of the
galaxy, and 23% of outflow host galaxies are significantly redder or have
significantly lower specific star formation rates when compared to a matched
sample of active galaxies.Comment: 32 pages, 11 figures, accepted for publication in MNRAS; See Figure 7
for a summary of the finding
LIINUS/SERPIL: a design study for interferometric imaging spectroscopy at the LBT
LIINUS/SERPIL is a design study to augment LBTs interferometric beam combiner
camera LINC-NIRVANA with imaging spectroscopy. The FWHM of the interferometric
main beam at 1.5 micron will be about 10 mas, offering unique imaging and
spectroscopic capabilities well beyond the angular resolution of current 8-10m
telescopes. At 10 mas angular scale, e.g., one resolution element at the
distance of the Galactic Center corresponds to the average diameter of the
Pluto orbit (79 AU), hence the size of the solar system. Taking advantage of
the LBT interferometric beam with an equivalent maximum diameter of 23 m,
LIINUS/SERPIL is an ideal precursor instrument for (imaging) spectrographs at
extremely large full aperture telescopes. LIINUS/SERPIL will be built upon the
LINC-NIRVANA hardware and LIINUS/SERPIL could potentially be developed on a
rather short timescale. The study investigates several concepts for the optical
as well as for the mechanical design. We present the scientific promises of
such an instrument together with the current status of the design study.Comment: 12 pages, SPIE conference proceeding, Orlando, 200
The central molecular gas structure in LINERs with low luminosity AGN: evidence for gradual disappearance of the torus
We present observations of the molecular gas in the nuclear environment of
three prototypical low luminosity AGN (LLAGN), based on VLT/SINFONI AO-assisted
integral-field spectroscopy of H2 1-0 S(1) emission at angular resolutions of
~0.17". On scales of 50-150 pc the spatial distribution and kinematics of the
molecular gas are consistent with a rotating thin disk, where the ratio of
rotation (V) to dispersion (sigma) exceeds unity. However, in the central 50
pc, the observations reveal a geometrically and optically thick structure of
molecular gas (V/sigma10^{23} cm^{-2}) that is likely to be
associated with the outer extent of any smaller scale obscuring structure. In
contrast to Seyfert galaxies, the molecular gas in LLAGN has a V/sigma<1 over
an area that is ~9 times smaller and column densities that are in average ~3
times smaller. We interpret these results as evidence for a gradual
disappearance of the nuclear obscuring structure. While a disk wind may not be
able to maintain a thick rotating structure at these luminosities, inflow of
material into the nuclear region could provide sufficient energy to sustain it.
In this context, LLAGN may represent the final phase of accretion in current
theories of torus evolution. While the inflow rate is considerable during the
Seyfert phase, it is slowly decreasing, and the collisional disk is gradually
transitioning to become geometrically thin. Furthermore, the nuclear region of
these LLAGN is dominated by intermediate-age/old stellar populations (with
little or no on-going star formation), consistent with a late stage of
evolution.Comment: 15 pages, including 4 figures and 1 table, Accepted for publication
in ApJ Letter
Uniaxial and Mixed Orientations of Poly(ethylene oxide) in Nanoporous Alumina Studied by X-ray Pole Figure Analysis
The orientation of polymers under confinement is a basic, yet not fully understood phenomenon. In this work, the texture of poly(ethylene oxide) (PEO) infiltrated in nanoporous anodic alumina oxide (AAO) templates was investigated by X-ray pole figures. The influence of geometry and crystallization conditions, such as pore diameter, aspect ratio, and cooling rates, was systematically examined. All the samples exhibited a single, volume-dependent crystallization temperature (Tc) at temperatures much lower than that exhibited by bulk PEO, indicating “clean” microdomains without detectable heterogeneous nucleation. An “orientation diagram” was established to account for the experimental observations. Under very high cooling rates (quenching), crystallization of PEO within AAO was nucleation-controlled, adopting a random distribution of crystallites. Under low cooling rates, growth kinetics played a decisive role on the crystal orientation. A relatively faster cooling rate (10 °C/min) and/or smaller pores lead to the * ║ pore axis (n⃗) mode (uniaxial orientation). When the cooling rate was lower (1 °C/min), and/or the pores were larger, a mixed orientation, with a coexistence of * ║ n⃗ and * ║ n⃗ , was observed. The results favor the kinetic model where the fastest growth direction tends to align parallel to the pore axis.This work is supported by the National Natural Science Foundation of China (NSFC, 21873109, 51820105005, 21274156). G. L. is grateful to the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2015026). G. L., D. W., and A. J. M. also acknowledge European funding by the RISE BIODEST project (H2020-MSCA-RISE-2017-778092). The authors thank Dr. Zhongkai Yang for assistance with pole figure measurement
The Keck/OSIRIS Nearby AGN Survey (KONA) I. The Nuclear K-band Properties of Nearby AGN
We introduce the Keck Osiris Nearby AGN survey (KONA), a new adaptive
optics-assisted integral-field spectroscopic survey of Seyfert galaxies. KONA
permits at ~0.1" resolution a detailed study of the nuclear kinematic structure
of gas and stars in a representative sample of 40 local bona fide active
galactic nucleus (AGN). KONA seeks to characterize the physical processes
responsible for the coevolution of supermassive black holes and galaxies,
principally inflows and outflows. With these IFU data of the nuclear regions of
40 Seyfert galaxies, the KONA survey will be able to study, for the first time,
a number of key topics with meaningful statistics. In this paper we study the
nuclear K-band properties of nearby AGN. We find that the luminosities of the
unresolved Seyfert 1 sources at 2.1 microns are correlated with the hard X-ray
luminosities, implying that the majority of the emission is non-stellar. The
best-fit correlation is logLK = 0.9logL2-10 keV + 4 over 3 orders of magnitude
in both K-band and X-ray luminosities. We find no strong correlation between
2.1 microns luminosity and hard X-ray luminosity for the Seyfert 2 galaxies.
The spatial extent and spectral slope of the Seyfert 2 galaxies indicate the
presence of nuclear star formation and attenuating material (gas and dust),
which in some cases is compact and in some galaxies extended. We detect
coronal-line emission in 36 galaxies and for the first time in five galaxies.
Finally, we find 4/20 galaxies that are optically classified as Seyfert 2 show
broad emission lines in the near-IR, and one galaxy (NGC 7465) shows evidence
of a double nucleus.Comment: Accepted for publication in ApJ, 19 pages with 18 figure
- …