166 research outputs found
Variationnal study of ferromagnetism in the t1-t2 Hubbard chain
A one-dimensional Hubbard model with nearest and (negative) next-nearest
neighbour hopping is studied variationally. This allows to exclude saturated
ferromagnetism for . The variational boundary has a minimum
at a ``critical density'' and diverges for .Comment: 5 pages, LateX and 1 postscript figure. To appear in Physica
Shadow band in the one-dimensional large Hubbard model
We show that the factorized wave-function of Ogata and Shiba can be used to
calculate the dependent spectral functions of the one-dimensional, infinite
Hubbard model, and of some extensions to finite . The resulting spectral
function is remarkably rich: In addition to low energy features typical of
Luttinger liquids, there is a well defined band, which we identify as the
shadow band resulting from spin fluctuations. This band should be
detectable experimentally because its intensity is comparable to that of the
main band for a large range of momenta.Comment: Latex file. 4 pages. Figures upon reques
Gp130-Dependent Release of Acute Phase Proteins Is Linked to the Activation of Innate Immune Signaling Pathways
Background: Elevated levels of acute phase proteins (APP) are often found in patients with cardiovascular diseases. In a previous study, we demonstrated the importance of the IL-6-gp130 axis-as a key regulator of inflammatory acute phase signaling in hepatocytes-for the development of atherosclerosis. Background/Principal Findings: Gp130-dependent gene expression was analyzed in a previously established hepatocytespecific gp130 knockout mouse model. We performed whole transcriptome analysis in isolated hepatocytes to measure tissue specific responses after proinflammatory stimulus with IL-6 across different time points. Our analyses revealed an unexpected small gene cluster that requires IL-6 stimulus for early activation. Several of the genes in this cluster are involved in different cell defense mechanisms. Thus, stressors that trigger both general stress and inflammatory responses lead to activation of a stereotypic innate cellular defense response. Furthermore, we identified a potential biomarker Lipocalin (LCN) 2 for the gp130 dependent early inflammatory response. Conclusions/Significance: Our findings suggest a complex network of tightly linked genes involved in the early activatio
Relative Reactivity of the Metal-Amido versus Metal-Imido Bond in Linked Cp-Amido and Half-Sandwich Complexes of Vanadium
Treatment of (η5-C5H4C2H4NR)V(N-t-Bu)Me (R = Me, i-Pr) and CpV(N-p-Tol)(N-i-Pr2)Me (Cp = η5-C5H5) with B(C6F5)3 or [Ph3C][B(C6F5)4] results in formation of the corresponding cations, [(η5-C5H4C2H4NR)V(N-t-Bu)]+ and [CpV(N-p-Tol)(N-i-Pr2)]+. The latter could also be generated as its N,N-dimethylaniline adduct by treatment of the methyl complex with [PhNMe2H][BAr4] (Ar = Ph, C6F5). Instead, the analogous reaction with the linked Cp-amido precursor results in protonation of the imido-nitrogen atom. Sequential cyclometalation of the amide substituents gave cationic imine complexes [(η5-C5H4C2H4NCR'2)V(NH-t-Bu)]+ (R' = H, Me) and methane. Reaction of cationic [(η5-C5H4C2H4NR)V(N-t-Bu)]+ with olefins affords the corresponding olefin adducts, whereas treatment with 1 or 2 equiv of 2-butyne results in insertion of the alkyne into the vanadium-nitrogen single bond, affording the mono- and bis-insertion products [(η5-C5H4C2H4N(i-Pr)C2Me2)V(N-t-Bu)]+ and [(η5-C5H4C2H4N(i-Pr)C4Me4)V(N-t-Bu)]+. The same reaction with the half-sandwich compound [CpV(N-p-Tol)(N-i-Pr2)]+ results in a paramagnetic compound that, upon alcoholysis, affords sec-butylidene-p-tolylamine, suggesting an initial [2+2] cycloaddition reaction. The difference in reactivity between the V-N bond versus the V=N bond was further studied using computational methods. Results were compared to the isoelectronic titanium system CpTi(NH)(NH2). These studies indicate that the kinetic product in each system is derived from a [2+2] cycloaddition reaction. For titanium, this was found as the thermodynamic product as well, whereas the insertion reaction was found to be thermodynamically more favorable in the case of vanadium.
Ground-State Dynamical Correlation Functions: An Approach from Density Matrix Renormalization Group Method
A numerical approach to ground-state dynamical correlation functions from
Density Matrix Renormalization Group (DMRG) is developed. Using sum rules,
moments of a dynamic correlation function can be calculated with DMRG, and with
the moments the dynamic correlation function can be obtained by the maximum
entropy method. We apply this method to one-dimensional spinless fermion
system, which can be converted to the spin 1/2 Heisenberg model in a special
case. The dynamical density-density correlation function is obtained.Comment: 11 pages, latex, 4 figure
One particle spectral weight of the three dimensional single band Hubbard model
Dynamic properties of the three-dimensional single-band Hubbard model are
studied using Quantum Monte Carlo combined with the maximum entropy technique.
At half-filling, there is a clear gap in the density of states and well-defined
quasiparticle peaks at the top (bottom) of the lower (upper) Hubbard band. We
find an antiferromagnetically induced weight above the naive Fermi momentum.
Upon hole doping, the chemical potential moves to the top of the lower band
where a robust peak is observed. Results are compared with spin-density-wave
(SDW) mean-field and self consistent Born approximation results, and also with
the infinite dimensional Hubbard model, and experimental photoemission (PES)
for three dimensional transition-metal oxides.Comment: 11 pages, REVTeX, 16 figures included using psfig.sty. Ref.30
correcte
Error-dependent modulation of speech-induced auditory suppression for pitch-shifted voice feedback
<p>Abstract</p> <p>Background</p> <p>The motor-driven predictions about expected sensory feedback (efference copies) have been proposed to play an important role in recognition of sensory consequences of self-produced motor actions. In the auditory system, this effect was suggested to result in suppression of sensory neural responses to self-produced voices that are predicted by the efference copies during vocal production in comparison with passive listening to the playback of the identical self-vocalizations. In the present study, event-related potentials (ERPs) were recorded in response to upward pitch shift stimuli (PSS) with five different magnitudes (0, +50, +100, +200 and +400 cents) at voice onset during active vocal production and passive listening to the playback.</p> <p>Results</p> <p>Results indicated that the suppression of the N1 component during vocal production was largest for unaltered voice feedback (PSS: 0 cents), became smaller as the magnitude of PSS increased to 200 cents, and was almost completely eliminated in response to 400 cents stimuli.</p> <p>Conclusions</p> <p>Findings of the present study suggest that the brain utilizes the motor predictions (efference copies) to determine the source of incoming stimuli and maximally suppresses the auditory responses to unaltered feedback of self-vocalizations. The reduction of suppression for 50, 100 and 200 cents and its elimination for 400 cents pitch-shifted voice auditory feedback support the idea that motor-driven suppression of voice feedback leads to distinctly different sensory neural processing of self vs. non-self vocalizations. This characteristic may enable the audio-vocal system to more effectively detect and correct for unexpected errors in the feedback of self-produced voice pitch compared with externally-generated sounds.</p
Recommended from our members
Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes.
We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10-7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition
Shared Genetic Etiology Between Alcohol Dependence and Major Depressive Disorder
The clinical comorbidity of alcohol dependence (AD) and
major depressive disorder (MDD) is well established,
whereas genetic factors influencing co-occurrence remain
unclear. A recent study using polygenic risk scores (PRS)
calculated based on the first-wave Psychiatric Genomics
Consortium MDD meta-analysis (PGC-MDD1) suggests a
modest shared genetic contribution to MDD and AD. Using a
(∼10 fold) larger discovery sample, we calculated PRS
based on the second wave (PGC-MDD2) of results, in a
severe AD case–control target sample. We found significant associations between AD disease status and MDD-PRS derived from both PGC-MDD2 (most informative
P-threshold=1.0, P=0.00063, R2=0.533%) and PGCMDD1
(P-threshold=0.2, P=0.00014, R2=0.663%) metaanalyses;
the larger discovery sample did not yield
additional predictive power. In contrast, calculating PRS in a MDD target sample yielded increased power when using
PGC-MDD2 (P-threshold=1.0, P=0.000038, R2=1.34%)
versus PGC-MDD1 (P-threshold=1.0, P=0.0013,
R2=0.81%). Furthermore, when calculating PGC-MDD2
PRS in a subsample of patients with AD recruited explicitly excluding comorbid MDD, significant associations were still found (n=331; P-threshold=1.0, P=0.042, R2=0.398%). Meanwhile, in the subset of patients in which MDD was not the explicit exclusion criteria, PRS predicted more variance (n=999; P-threshold=1.0, P=0.0003, R2=0.693%). Our findings replicate the reported genetic overlap between AD and MDD and also suggest the need for improved, rigorous phenotyping to identify true shared cross-disorder genetic factors. Larger target samples are needed to reduce noise and take advantage of increasing discovery sample size
Spectral and transport properties of doped Mott-Hubbard systems with incommensurate magnetic order
We present spectral and optical properties of the Hubbard model on a
two-dimensional square lattice using a generalization of dynamical mean-field
theory to magnetic states in finite dimension. The self-energy includes the
effect of spin fluctuations and screening of the Coulomb interaction due to
particle-particle scattering. At half-filling the quasiparticles reduce the
width of the Mott-Hubbard `gap' and have dispersions and spectral weights that
agree remarkably well with quantum Monte Carlo and exact diagonalization
calculations. Away from half-filling we consider incommensurate magnetic order
with a varying local spin direction, and derive the photoemission and optical
spectra. The incommensurate magnetic order leads to a pseudogap which opens at
the Fermi energy and coexists with a large Mott-Hubbard gap. The quasiparticle
states survive in the doped systems, but their dispersion is modified with the
doping and a rigid band picture does not apply. Spectral weight in the optical
conductivity is transferred to lower energies and the Drude weight increases
linearly with increasing doping. We show that incommensurate magnetic order
leads also to mid-gap states in the optical spectra and to decreased scattering
rates in the transport processes, in qualitative agreement with the
experimental observations in doped systems. The gradual disappearence of the
spiral magnetic order and the vanishing pseudogap with increasing temperature
is found to be responsible for the linear resistivity. We discuss the possible
reasons why these results may only partially explain the features observed in
the optical spectra of high temperature superconductors.Comment: 22 pages, 18 figure
- …