656 research outputs found

    Intracellular distribution of DNA methyltransferase during the cell cycle

    Get PDF
    AbstractThe intracellular distribution of DNA methyltransferase has been analyzed in synchronously proliferating human cells. The localization of DNA methyltransferase was determined immunocytochemically using monoclonal antibodies directed against this enzyme. DNA methyltransferase was found to accumulate predominantly in nuclei with weak cytoplasmic staining. The DNA methyltransferase antigen was absent in early G1 phase, appeared in late G1 prior to the onset of DNA synthesis and persisted throughout S and G2 phases of the cell cycle. Mitotic cells showed a particularly strong staining intensity. These results show that DNA methyltransferase levels fluctuate during the cell cycle. This has possible implications on the stability of the DNA methylation pattern

    ESTIMATION OF CENTER OF MASS VELOCITY BY RIGHT POSTERIOR SPINE ILIAC LANDMARK DURING COUNTERMOVEMENT JUMP

    Get PDF
    When the impulse phase is proceeded by approach movement (e.g. volleyball spike jump), the vertical velocity of CoM at the beginning of the impulse phase must be known. To reduce the number of landmarks, the aim of this study was to verify the concordance between the velocity of CoM and the Right Posterior Spine Iliac at touchdown after flight phase. Ten female volleyball players of the first national volleyball league of Austria performed ten maximal CMJ without arm movement. Paired t-test was used to compare velocities between the two methods. No significant differences between the methods with maximal individual differences lower than 0.1m/s at touchdown could be found. If only the landing velocity at touchdown must be known, it seems to be sufficient to determine the velocity of Right Posterior Spine Iliac landmark

    Superconformal operators in Yang-Mills theories on the light-cone

    Full text link
    We employ the light-cone superspace formalism to develop an efficient approach to constructing superconformal operators of twist two in Yang-Mills theories with N=1,2,4 supercharges. These operators have an autonomous scale dependence to one-loop order and determine the eigenfunctions of the dilatation operator in the underlying gauge theory. We demonstrate that for arbitrary N the superconformal operators are given by remarkably simple, universal expressions involving the light-cone superfields. When written in components field, they coincide with the known results obtained by conventional techniques.Comment: 29 pages, Late

    On planar gluon amplitudes/Wilson loops duality

    Get PDF
    There is growing evidence that on-shell gluon scattering amplitudes in planar N=4 SYM theory are equivalent to Wilson loops evaluated over contours consisting of straight, light-like segments defined by the momenta of the external gluons. This equivalence was first suggested at strong coupling using the AdS/CFT correspondence and has since been verified at weak coupling to one loop in perturbation theory. Here we perform an explicit two-loop calculation of the Wilson loop dual to the four-gluon scattering amplitude and demonstrate that the relation holds beyond one loop. We also propose an anomalous conformal Ward identity which uniquely fixes the form of the finite part (up to an additive constant) of the Wilson loop dual to four- and five-gluon amplitudes, in complete agreement with the BDS conjecture for the multi-gluon MHV amplitudes.Comment: 16 pages, 1 figure. v2: minor correction

    Integrability of two-loop dilatation operator in gauge theories

    Full text link
    We study the two-loop dilatation operator in the noncompact SL(2) sector of QCD and supersymmetric Yang-Mills theories with N=1,2,4 supercharges. The analysis is performed for Wilson operators built from three quark/gaugino fields of the same helicity belonging to the fundamental/adjoint representation of the SU(3)/SU(N_c) gauge group and involving an arbitrary number of covariant derivatives projected onto the light-cone. To one-loop order, the dilatation operator inherits the conformal symmetry of the classical theory and is given in the multi-color limit by a local Hamiltonian of the Heisenberg magnet with the spin operators being generators of the collinear subgroup of full (super)conformal group. Starting from two loops, the dilatation operator depends on the representation of the gauge group and, in addition, receives corrections stemming from the violation of the conformal symmetry. We compute its eigenspectrum and demonstrate that to two-loop order integrability survives the conformal symmetry breaking in the aforementioned gauge theories, but it is violated in QCD by the contribution of nonplanar diagrams. In SYM theories with extended supersymmetry, the N-dependence of the two-loop dilatation operator can be factorized (modulo an additive normalization constant) into a multiplicative c-number. This property makes the eigenspectrum of the two-loop dilatation operator alike in all gauge theories including the maximally supersymmetric theory. Our analysis suggests that integrability is only tied to the planar limit and it is sensitive neither to conformal symmetry nor supersymmetry.Comment: 70 pages, 10 figure

    Twist-three analysis of photon electroproduction with pion

    Full text link
    We study twist-three effects in spin, charge, and azimuthal asymmetries in deeply virtual Compton scattering on a spin-zero target. Contributions which are power suppressed in 1/Q generate a new azimuthal angle dependence of the cross section which is not present in the leading twist results. On the other hand the leading twist terms are not modified by the twist three contributions. They may get corrected at twist four level. In the Wandzura-Wilczek approximation these new terms in the Fourier expansion with respect to the azimuthal angle are entirely determined by the twist-two skewed parton distributions. We also discuss more general issues like the general form of the angular dependence of the differential cross section, validity of factorization at twist-three level, and a relation of skewed parton distributions to spectral functions.Comment: 21 pages, LaTeX, 2 figures, text clarifications, an equation, a note and references adde

    Baryon Distribution Amplitudes in QCD

    Get PDF
    We develop a new theoretical framework for the description of leading twist light-cone baryon distribution amplitudes which is based on integrability of the helicity λ=3/2\lambda=3/2 evolution equation to leading logarithmic accuracy. A physical interpretation is that one can identify a new `hidden' quantum number which distinguishes components in the λ=3/2\lambda=3/2 distribution amplitudes with different scale dependence. The solution of the corresponding evolution equation is reduced to a simple three-term recurrence relation. The exact analytic solution is found for the component with the lowest anomalous dimension for all moments NN, and the WKB-type expansion is constructed for other levels, which becomes asymptotically exact at large NN. Evolution equations for the λ=1/2\lambda=1/2 distribution amplitudes (e.g. for the nucleon) are studied as well. We find that the two lowest anomalous dimensions for the λ=1/2\lambda=1/2 operators (one for each parity) are separated from the rest of the spectrum by a finite `mass gap'. These special states can be interpreted as scalar diquarks.Comment: 75 pages, LaTeX style, 18 figures embedded with epsf.st

    Extraction of the pion distribution amplitude from polarized muon pair production

    Get PDF
    We consider the production of muon pairs from the scattering of pions on longitudinally polarized protons. We calculate the cross section and the single spin asymmetry for this process, taking into account pion bound state effects. We work in the kinematic region where the photon has a large longitudinal momentum fraction, which allows us to treat the bound state problem perturbatively. Our predictions are directly proportional to the pion distribution amplitude. A measurement of the polarized Drell-Yan cross section thus allows the determination of the shape of the pion distribution amplitude.Comment: 13 pages, using revtex, two figures added separately as one uuencoded Z-compressed fil

    Nonforward anomalous dimensions of Wilson operators in N=4 super-Yang-Mills theory

    Full text link
    We present the next-to-leading order results for universal non-forward anomalous dimensions of Wilson twist-2 operators in N=4 supersymmetric Yang-Mills theory. The whole calculation was performed using supersymmetric Ward identities derived in this paper together with already known QCD results and does not involve any additional calculation of diagrams. We also considered one particular limit of our result, which could potentially be interesting in the context of AdS/CFT correspondence.Comment: 15 pages, references added, typos corrected, version accepted in JHE

    Time-variability in the Interstellar Boundary Conditions of the Heliosphere: Effect of the Solar Journey on the Galactic Cosmic Ray Flux at Earth

    Full text link
    During the solar journey through galactic space, variations in the physical properties of the surrounding interstellar medium (ISM) modify the heliosphere and modulate the flux of galactic cosmic rays (GCR) at the surface of the Earth, with consequences for the terrestrial record of cosmogenic radionuclides. One phenomenon that needs studying is the effect on cosmogenic isotope production of changing anomalous cosmic ray fluxes at Earth due to variable interstellar ionizations. The possible range of interstellar ram pressures and ionization levels in the low density solar environment generate dramatically different possible heliosphere configurations, with a wide range of particle fluxes of interstellar neutrals, their secondary products, and GCRs arriving at Earth. Simple models of the distribution and densities of ISM in the downwind direction give cloud transition timescales that can be directly compared with cosmogenic radionuclide geologic records. Both the interstellar data and cosmogenic radionuclide data are consistent with cloud transitions during the Holocene, with large and assumption-dependent uncertainties. The geomagnetic timeline derived from cosmic ray fluxes at Earth may require adjustment to account for the disappearance of anomalous cosmic rays when the Sun is immersed in ionized gas.Comment: Submitted to Space Sciences Review
    corecore