52,215 research outputs found

    Probing the environment of emerin by Enhanced ascorbate peroxidase 2 (APEX2)-mediated proximity labeling.

    Get PDF
    Emerin is one of the best characterized proteins of the inner nuclear membrane, but can also occur at the level of the endoplasmic reticulum. We now use enhanced ascorbate peroxidase 2 (APEX2) to probe the environment of emerin. APEX2 can be used as a genetic tag that produces short-lived yet highly reactive biotin species, allowing the modification of proteins that interact with or are in very close proximity to the tagged protein. Biotinylated proteins can be isolated using immobilized streptavidin and analyzed by mass spectrometry. As an alternative to the standard approach with a genetic fusion of APEX2 to emerin, we also used RAPIDS (rapamycin- and APEX-dependent identification of proteins by SILAC), a method with improved specificity, where the peroxidase interacts with the protein of interest (i.e., emerin) only upon addition of rapamycin to the cells. We compare these different approaches, which, together, identify well-known interaction partners of emerin like lamin A and the lamina associated polypeptide 1 (LAP1), as well as novel proximity partners

    Equation of state and critical behavior of polymer models: A quantitative comparison between Wertheim's thermodynamic perturbation theory and computer simulations

    Full text link
    We present an application of Wertheim's Thermodynamic Perturbation Theory (TPT1) to a simple coarse grained model made of flexibly bonded Lennard-Jones monomers. We use both the Reference Hyper-Netted-Chain (RHNC) and Mean Spherical approximation (MSA) integral equation theories to describe the properties of the reference fluid. The equation of state, the density dependence of the excess chemical potential, and the critical points of the liquid--vapor transition are compared with simulation results and good agreement is found. The RHNC version is somewhat more accurate, while the MSA version has the advantage of being almost analytic. We analyze the scaling behavior of the critical point of chain fluids according to TPT1 and find it to reproduce the mean field exponents: The critical monomer density is predicted to vanish as n−1/2n^{-1/2} upon increasing the chain length nn while the critical temperature is predicted to reach an asymptotic finite temperature that is attained as n−1/2n^{-1/2}. The predicted asymptotic finite critical temperature obtained from the RHNC and MSA versions of TPT1 is found to be in good agreement with the Θ\Theta point of our polymer model as obtained from the temperature dependence of the single chain conformations.Comment: to appear in J.Chem.Phy

    Cyclic motion and inversion of surface flow direction in a dense polymer brush under shear

    Full text link
    Using molecular simulations, we study the properties of a polymer brush in contact with an explicit solvent under Couette and Poiseuille flow. The solvent is comprised of chemically identical chains. We present evidence that individual, unentangled chains in the dense brush exhibit cyclic, tumbling motion and non-Gaussian fluctuations of the molecular orientations similar to the behaviour of isolated tethered chains in shear flow. The collective molecular motion gives rise to an inversion of hydrodynamic flow direction in the vicinity of the brush-coated surface. Utilising Couette and Poiseuille flow, we investigate to what extend the effect of a brush-coated surface can be described by a Navier slip condition.Comment: 6 pages, 6 figures, submitted for publicatio

    Expression of PIK3CA mutant E545K in the mammary gland induces heterogeneous tumors but is less potent than mutant H1047R.

    Get PDF
    The phosphoinositide 3-kinase (PI3K) signaling cascade is a key mediator of cellular growth, survival and metabolism and is frequently subverted in human cancer. The gene encoding for the alpha catalytic subunit of PI3K (PIK3CA) is mutated and/or amplified in ∼30% of breast cancers. Mutations in either the kinase domain (H1047R) or the helical domain (E545K) are most common and result in a constitutively active enzyme with oncogenic capacity. PIK3CA(H1047R) was previously demonstrated to induce tumors in transgenic mouse models; however, it was not known whether overexpression of PIK3CA(E545K) is sufficient to induce mammary tumors and whether tumor initiation by these two types of mutants differs. Here, we demonstrate that expression of PIK3CA(E545K) in the mouse mammary gland induces heterogenous mammary carcinomas but with a longer latency than PIK3CA(H1047R)-expressing mice. Our results suggest that the helical domain mutant PIK3CA(E545K) is a less potent inducer of mammary tumors due to less efficient activation of downstream Akt signaling

    Symmetries and Triplet Dispersion in a Modified Shastry-Sutherland Model for SrCu_2(BO_3)_2

    Full text link
    We investigate the one-triplet dispersion in a modified Shastry-Sutherland Model for SrCu_2(BO_3)_2 by means of a series expansion about the limit of strong dimerization. Our perturbative method is based on a continuous unitary transformation that maps the original Hamiltonian to an effective, energy quanta conserving block diagonal Hamiltonian H_{eff}. The dispersion splits into two branches which are nearly degenerated. We analyse the symmetries of the model and show that space group operations are necessary to explain the degeneracy of the dispersion at k=0 and at the border of the magnetic Brillouin zone. Moreover, we investigate the behaviour of the dispersion for small |k| and compare our results to INS data.Comment: 9 pages, 8 figures accepted by J. Phys.: Condens. Matte

    Geometric quantum gates with superconducting qubits

    Get PDF
    We suggest a scheme to implement a universal set of non-Abelian geometric transformations for a single logical qubit composed of three superconducting transmon qubits coupled to a single cavity. The scheme utilizes an adiabatic evolution in a rotating frame induced by the effective tripod Hamiltonian which is achieved by longitudinal driving of the transmons. The proposal is experimentally feasible with the current state of the art and could serve as a first proof of principle for geometric quantum computing.Comment: 7 pages, 5 figure

    Interface Engineering to Create a Strong Spin Filter Contact to Silicon

    Get PDF
    Integrating epitaxial and ferromagnetic Europium Oxide (EuO) directly on silicon is a perfect route to enrich silicon nanotechnology with spin filter functionality. To date, the inherent chemical reactivity between EuO and Si has prevented a heteroepitaxial integration without significant contaminations of the interface with Eu silicides and Si oxides. We present a solution to this long-standing problem by applying two complementary passivation techniques for the reactive EuO/Si interface: (ii) an in situin\:situ hydrogen-Si (001)(001) passivation and (iiii) the application of oxygen-protective Eu monolayers --- without using any additional buffer layers. By careful chemical depth profiling of the oxide-semiconductor interface via hard x-ray photoemission spectroscopy, we show how to systematically minimize both Eu silicide and Si oxide formation to the sub-monolayer regime --- and how to ultimately interface-engineer chemically clean, heteroepitaxial and ferromagnetic EuO/Si (001)(001) in order to create a strong spin filter contact to silicon.Comment: 11 pages of scientific paper, 10 high-resolution color figures. Supplemental information on the thermodynamic problem available (PDF). High-resolution abstract graphic available (PNG). Original research (2016

    Mesoscopic scattering of spin s particles

    Full text link
    Quantum effects in weakly disordered systems are governed by the properties of the elementary interaction between propagating particles and impurities. Long range mesoscopic effects due to multiple scattering are derived by iterating the single scattering vertex, which has to be appropriately diagonalized. In the present contribution, we present a systematic and detailed diagonalisation of the diffuson and cooperon vertices responsible for weak localisation effects. We obtain general expressions for eigenvalues and projectors onto eigenmodes, for any spin and arbitrary elementary interaction with impurities. This description provides a common frame for a unified theory of mesoscopic spin physics for electrons, photons, and other quantum particles. We treat in detail the case of spin-flip scattering of electrons by freely orientable magnetic impurities and briefly review the case of photon scattering from degenerate dipole transitions in cold atomic gases.Comment: published version, with a new figure and new section
    • …
    corecore