Using molecular simulations, we study the properties of a polymer brush in
contact with an explicit solvent under Couette and Poiseuille flow. The solvent
is comprised of chemically identical chains. We present evidence that
individual, unentangled chains in the dense brush exhibit cyclic, tumbling
motion and non-Gaussian fluctuations of the molecular orientations similar to
the behaviour of isolated tethered chains in shear flow. The collective
molecular motion gives rise to an inversion of hydrodynamic flow direction in
the vicinity of the brush-coated surface. Utilising Couette and Poiseuille
flow, we investigate to what extend the effect of a brush-coated surface can be
described by a Navier slip condition.Comment: 6 pages, 6 figures, submitted for publicatio