6,328 research outputs found

    Radio Properties of the γ\gamma-ray Emitting CSO Candidate 2234+282

    Get PDF
    Most of the gamma-ray emitting active galactic nuclei (AGN) are blazars, although there is still a small fraction of non-blazar AGN in the Fermi/LAT catalog. Among these misaligned gamma-ray-emitting AGN, a few can be classified as Compact Symmetric Objects (CSOs). In contrast to blazars in which gamma-ray emission is generally thought to originate from highly beamed relativistic jets, the source of gamma-ray emission in unbeamed CSOs remains an open question. The rarity of the gamma-ray emitting CSOs is a mystery as well. Here we present the radio properties of the gamma-ray CSO candidate 2234+282.Comment: 4 pages, accepted for publication in Astronomische Nachrichte

    On the nature of bright compact radio sources at z>4.5

    Get PDF
    High-redshift radio-loud quasars are used to, among other things, test the predictions of cosmological models, set constraints on black hole growth in the early universe and understand galaxy evolution. Prior to this paper, 20 extragalactic radio sources at redshifts above 4.5 have been imaged with very long baseline interferometry (VLBI). Here we report on observations of an additional ten z>4.5 sources at 1.7 and 5 GHz with the European VLBI Network (EVN), thereby increasing the number of imaged sources by 50%. Combining our newly observed sources with those from the literature, we create a substantial sample of 30 z>4.5 VLBI sources, allowing us to study the nature of these objects. Using spectral indices, variability and brightness temperatures, we conclude that of the 27 sources with sufficient information to classify, the radio emission from one source is from star formation, 13 are flat-spectrum radio quasars and 13 are steep-spectrum sources. We also argue that the steep-spectrum sources are off-axis (unbeamed) radio sources with rest-frame self-absorption peaks at or below GHz frequencies and that these sources can be classified as gigahertz peaked-spectrum (GPS) and megahertz peaked-spectrum (MPS) sources.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society, 18 pages, 1 figure, 7 table

    Uncovering Unique Concept Vectors through Latent Space Decomposition

    Full text link
    Interpreting the inner workings of deep learning models is crucial for establishing trust and ensuring model safety. Concept-based explanations have emerged as a superior approach that is more interpretable than feature attribution estimates such as pixel saliency. However, defining the concepts for the interpretability analysis biases the explanations by the user's expectations on the concepts. To address this, we propose a novel post-hoc unsupervised method that automatically uncovers the concepts learned by deep models during training. By decomposing the latent space of a layer in singular vectors and refining them by unsupervised clustering, we uncover concept vectors aligned with directions of high variance that are relevant to the model prediction, and that point to semantically distinct concepts. Our extensive experiments reveal that the majority of our concepts are readily understandable to humans, exhibit coherency, and bear relevance to the task at hand. Moreover, we showcase the practical utility of our method in dataset exploration, where our concept vectors successfully identify outlier training samples affected by various confounding factors. This novel exploration technique has remarkable versatility to data types and model architectures and it will facilitate the identification of biases and the discovery of sources of error within training data

    Eagle: A Team Practices Audit Framework for Agile Software Development

    Get PDF
    Agile/XP (Extreme Programming) software teams are expected to follow a number of specific practices in each iteration, such as estimating the effort ("points") required to complete user stories, properly using branches and pull requests to coordinate merging multiple contributors’ code, having frequent "standups" to keep all team members in sync, and conducting retrospectives to identify areas of improvement for future iterations. We combine two observations in developing a methodology and tools to help teams monitor their performance on these practices. On the one hand, many Agile practices are increasingly supported by web-based tools whose "data exhaust" can provide insight into how closely the teams are following the practices. On the other hand, some of the practices can be expressed in terms similar to those developed for expressing service level objectives (SLO) in software as a service; as an example, a typical SLO for an interactive Web site might be "over any 5-minute window, 99% of requests to the main page must be delivered within 200ms" and, analogously, a potential Team Practice (TP) for an Agile/XP team might be "over any 2-week iteration, 75% of stories should be ’1-point’ stories". Following this similarity, we adapt a system originally developed for monitoring and visualizing service level agreement (SLA) compliance to monitor selected TPs for Agile/XP software teams. Specifically, the system consumes and analyzes the data exhaust from widely-used tools such as GitHub and Pivotal Tracker and provides team(s) and coach(es) a "dashboard" summarizing the teams’ adherence to various practices. As a qualitative initial investigation of its usefulness, we deployed it to twenty student teams in a four-sprint software engineering project course. We find an improvement of the adherence to team practice and a positive students’ self-evaluations of their team practices when using the tool, compared to previous experiences using an Agile/XP methodology. The demo video is located at https://youtu.be/A4xwJMEQh9c and a landing page with a live demo at https://isa-group.github.io/2019-05-eagle-demo/

    VLBI studies of DAGN and SMBHB hosting galaxies

    Get PDF
    Dual active galactic nuclei (DAGN) and supermassive black hole binaries (SMBHBs) at kpc and pc-scale separations, respectively, are expected during stages of galaxy merger and evolution. Their observational identification can address a range of areas of current astrophysics frontiers including the final parsec problem and their contribution towards the emission of low-frequency gravitational waves. This has however been difficult to achieve with current spectroscopy and time domain strategies. Very long baseline interferometry (VLBI) as a method of directly imaging radio structures with milli-arcsecond (mas) and sub-mas resolutions is introduced as a possible means of detecting DAGN and SMBHBs. We motivate its usage with expected observational signatures and cite some studies from literature to illustrate its current status, and present an updated list of candidates imaged with high-resolution radio observations. We then recall some shortcomings of the method with possible solutions and discuss future directions, relevant to large surveys with the upcoming Square Kilometer Array and future space VLBI missions.Comment: 13 pages, 2 table; Radio Science (accepted

    Nuclear fragmentation: sampling the instabilities of binary systems

    Get PDF
    We derive stability conditions of Asymmetric Nuclear Matter (ANMANM) and discuss the relation to mechanical and chemical instabilities of general two-component systems. We show that the chemical instability may appear as an instability of the system against isoscalar-like rather than isovector-like fluctuations if the interaction between the two constituent species has an attractive character as in the case of ANMANM. This leads to a new kind of liquid-gas phase transition, of interest for fragmentation experiments with radioactive beams.Comment: 4 pages (LATEX), 3 Postscript figures, improved version, added reference

    Effects of isospin and momentum dependent interactions on liquid-gas phase transition in hot asymmetric nuclear matter

    Get PDF
    The liquid-gas phase transition in hot neutron-rich nuclear matter is investigated within a self-consistent thermal model using an isospin and momentum dependent interaction (MDI) constrained by the isospin diffusion data in heavy-ion collisions, a momentum-independent interaction (MID), and an isoscalar momentum-dependent interaction (eMDYI). The boundary of the phase-coexistence region is shown to be sensitive to the density dependence of the nuclear symmetry energy with a softer symmetry energy giving a higher critical pressure and a larger area of phase-coexistence region. Compared with the momentum-independent MID interaction, the isospin and momentum-dependent MDI interaction is found to increase the critical pressure and enlarge the area of phase-coexistence region. For the isoscalar momentum-dependent eMDYI interaction, a limiting pressure above which the liquid-gas phase transition cannot take place has been found and it is shown to be sensitive to the stiffness of the symmetry energy.Comment: 6 pages, 4 figures, revised version, to appear in PL
    • …
    corecore