60 research outputs found

    Hydrogen Production and Carbon Capture by Gas‐Phase Methane Pyrolysis: A Feasibility Study

    Get PDF
    Using natural gas and sustainable biogas as feed, high-temperature pyrolysis represents a potential technology for large-scale hydrogen production and simultaneous carbon capture. Further utilization of solid carbon accruing during the process (i. e., in battery industry or for metallurgy) increases the process\u27s economic chances. This study demonstrated the feasibility of gas-phase methane pyrolysis for hydrogen production and carbon capture in an electrically heated high-temperature reactor operated between 1200 and 1600 °C under industrially relevant conditions. While hydrogen addition controlled methane conversion and suppressed the formation of undesired byproducts, an increasing residence time decreased the amount of byproducts and benefited high hydrogen yields. A temperature of 1400 °C ensured almost full methane conversion, moderate byproduct formation, and high hydrogen yield. A reaction flow analysis of the gas-phase kinetics revealed acetylene, ethylene, and benzene as the main intermediate products and precursors of carbon formation

    Disaster Situation and Humanitarian Emergency – In-Between Responses to the Refugee Crisis in Germany

    Get PDF
    In 2015, the needs of hundreds of thousands of refugees who arrived in Germany could only be met by deploying all available civil protection units. This article presents procedures and practices of state and non-state formal actors in the field of civil protection and related crisis management structures implemented and established across the board in the municipalities, the Federal Government and mass shelters, in particular in Bavaria. From a disaster research and humanitarian studies perspective we use the concept of “patterns of interpretation” to analyse the application of the “humanitarian emergency” and the “disaster situation” procedures to discuss whether the situation can really be categorized as “either-or” or whether the coexistence of the two served a function in managing such a complex situation. Finally, we discuss some developments that occurred after 2015/16 and consider the extent to which these developments shift or expand the existing patterns of interpretation

    Dual-controlled optogenetic system for the rapid down-regulation of protein levels in mammalian cells

    Get PDF
    Abstract Optogenetic switches are emerging molecular tools for studying cellular processes as they offer higher spatiotemporal and quantitative precision than classical, chemical-based switches. Light-controllable gene expression systems designed to upregulate protein expression levels meanwhile show performances superior to their chemical-based counterparts. However, systems to reduce protein levels with similar efficiency are lagging behind. Here, we present a novel two-component, blue light-responsive optogenetic OFF switch (‘Blue-OFF’), which enables a rapid and quantitative down-regulation of a protein upon illumination. Blue-OFF combines the first light responsive repressor KRAB-EL222 with the protein degradation module B-LID (blue light-inducible degradation domain) to simultaneously control gene expression and protein stability with a single wavelength. Blue-OFF thus outperforms current optogenetic systems for controlling protein levels. The system is described by a mathematical model which aids in the choice of experimental conditions such as light intensity and illumination regime to obtain the desired outcome. This approach represents an advancement of dual-controlled optogenetic systems in which multiple photosensory modules operate synergistically. As exemplified here for the control of apoptosis in mammalian cell culture, the approach opens up novel perspectives in fundamental research and applications such as tissue engineering

    Cytoskeletal control of B cell responses to antigens.

    Get PDF
    The actin cytoskeleton is essential for cell mechanics and has increasingly been implicated in the regulation of cell signalling. In B cells, the actin cytoskeleton is extensively coupled to B cell receptor (BCR) signalling pathways, and defects of the actin cytoskeleton can either promote or suppress B cell activation. Recent insights from studies using single-cell imaging and biophysical techniques suggest that actin orchestrates BCR signalling at the plasma membrane through effects on protein diffusion and that it regulates antigen discrimination through the biomechanics of immune synapses. These mechanical functions also have a role in the adaptation of B cell subsets to specialized tasks during antibody responses

    Human cytomegalovirus immediate-early 1 protein rewires upstream STAT3 to downstream STAT1 signaling switching an IL6-type to an IFNγ-like response

    Get PDF
    MN and CP were supported by the Wellcome Trust (www.wellcome.ac.uk) Institutional Strategic Support Fund and CP was supported by the Deutsche Forschungsgemeinschaft (PA 815/2-1; www.dfg.de).The human cytomegalovirus (hCMV) major immediate-early 1 protein (IE1) is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. This repression is followed by STAT1 phosphorylation and activation of STAT1 target genes normally induced by IFNγ. The observed repression and subsequent activation are both mediated through the same region (amino acids 410 to 445) in the C-terminal domain of IE1, and this region serves as a binding site for STAT3. Depletion of STAT3 phenocopies the STAT1-dependent IFNγ-like response to IE1. In contrast, depletion of the IL6 receptor (IL6ST) or the STAT kinase JAK1 prevents this response. Accordingly, treatment with IL6 leads to prolonged STAT1 instead of STAT3 activation in wild-type IE1 expressing cells, but not in cells expressing a mutant protein (IE1dl410-420) deficient for STAT3 binding. A very similar STAT1-directed response to IL6 is also present in cells infected with a wild-type or revertant hCMV, but not an IE1dl410-420 mutant virus, and this response results in restricted viral replication. We conclude that IE1 is sufficient and necessary to rewire upstream IL6-type to downstream IFNγ-like signaling, two pathways linked to opposing actions, resulting in repressed STAT3- and activated STAT1-responsive genes. These findings relate transcriptional repressor and activator functions of IE1 and suggest unexpected outcomes relevant to viral pathogenesis in response to cytokines or growth factors that signal through the IL6ST-JAK1-STAT3 axis in hCMV-infected cells. Our results also reveal that IE1, a protein considered to be a key activator of the hCMV productive cycle, has an unanticipated role in tempering viral replication.Publisher PDFPeer reviewe

    Abridged version of the AWMF guideline for the medical clinical diagnostics of indoor mould exposure

    Get PDF

    Allogeneic hematopoietic cell transplantation as curative therapy for non-transformed follicular lymphomas

    No full text
    Allogeneic hematopoietic cell transplantation (HCT) offers the chance of cure for patients with non-transformed follicular lymphoma (FL), but is associated with the risk of non-relapse mortality (NRM). The aim of this study was to identify subgroups of FL patients who benefit from HCT. The European Society for Blood and Marrow Transplantation (EBMT) Minimum-Essential-A Data of 146 consecutive patients who received HCT for FL between 1998 and 2008 were extracted from the database of the German Registry 'DRST'. Diagnosis of FL was verified by contact with the reference pathologists. Estimated 1-, 2- and 5-year overall survivals (OS) were 67%, 60% and 53%, respectively. Day 100 NRM was 15%. Thirteen out of 33 patients (40%) with treatment-refractory disease (RD) at the time of transplantation survived long term. Univariate statistical analysis suggested limited chronic GvHD, donor age = 55 years had no impact on outcome. Thus, HCT for FL is associated with acceptable NRM, and offers a substantial chance of cure for patients with RD or advanced age. Donors <= 42 years should be preferred if available
    corecore