362 research outputs found
Emotional bias training as a treatment for anxiety and depression: evidence from experimental medicine studies in healthy and medicated samples.
BACKGROUND: Anxiety and depression are leading causes of disability worldwide, yet individuals are often unable to access appropriate treatment. There is a need to develop effective interventions that can be delivered remotely. Previous research has suggested that emotional processing biases are a potential target for intervention, and these may be altered through brief training programs. METHODS: We report two experimental medicine studies of emotional bias training in two samples: individuals from the general population (n = 522) and individuals currently taking antidepressants to treat anxiety or depression (n = 212). Participants, recruited online, completed four sessions of EBT from their own home. Mental health and cognitive functioning outcomes were assessed at baseline, immediately post-training, and at 2-week follow-up. RESULTS: In both studies, our intervention successfully trained participants to perceive ambiguous social information more positively. This persisted at a 2-week follow-up. There was no clear evidence that this change in emotional processing transferred to improvements in symptoms in the primary analyses. However, in both studies, there was weak evidence for improved quality of life following EBT amongst individuals with more depressive symptoms at baseline. No clear evidence of transfer effects was observed for self-reported daily stress, anhedonia or depressive symptoms. Exploratory analyses suggested that younger participants reported greater treatment gains. CONCLUSIONS: These studies demonstrate the effectiveness of delivering a multi-session online training program to promote lasting cognitive changes. Given the inconsistent evidence for transfer effects, EBT requires further development before it can be considered as a treatment for anxiety and depression
Migraine aura: retracting particle-like waves in weakly susceptible cortex
Cortical spreading depression (SD) has been suggested to underlie migraine aura. Despite a precise match in speed, the spatio-temporal patterns of SD and aura symptoms on the cortical surface ordinarily differ in aspects of size and shape. We show that this mismatch is reconciled by utilizing that both pattern types bifurcate from an instability point of generic reaction-diffusion models. To classify these spatio-temporal pattern we suggest a susceptibility scale having the value [sigma]=1 at the instability point. We predict that human cortex is only weakly susceptible to SD ([sigma]<1), and support this prediction by directly matching visual aura symptoms with anatomical landmarks using fMRI retinotopic mapping. We discuss the increased dynamical repertoire of cortical tissue close to [sigma]=1, in particular, the resulting implications on migraine pharmacology that is hitherto tested in the regime ([sigma]>>1), and potentially silent aura occurring below a second bifurcation point at [sigma]=0 on the susceptible scale
Phenotypic Detection of Clonotypic B Cells in Multiple Myeloma by Specific Immunoglobulin Ligands Reveals their Rarity in Multiple Myeloma
In multiple myeloma, circulating “clonotypic” B cells, that express the immunoglobulin rearrangement of the malignant plasma cell clone, can be indirectly detected by PCR. Their role as potential “feeder” cells for the malignant plasma cell pool remains controversial. Here we established for the first time an approach that allows direct tracking of such clonotypic cells by labeling with patient-specific immunoglobulin ligands in 15 patients with myeloma. Fifty percent of patients showed evidence of clonotypic B cells in blood or bone marrow by PCR. Epitope-mimicking peptides from random libraries were selected on each patient's individual immunoglobulin and used as ligands to trace cells expressing the idiotypic immunoglobulin on their surface. We established a flow cytometry and immunofluorescence protocol to track clonotypic B cells and validated it in two independent monoclonal B cell systems. Using this method, we found clonotypic B cells in only one out of 15 myeloma patients. In view of the assay's validated sensitivity level of 10−3, this surprising data suggests that the abundance of such cells has been vastly overestimated in the past and that they apparently represent a very rare population in myeloma. Our novel tracing approach may open perspectives to isolate and analyze clonotypic B cells and determine their role in myeloma pathobiology
Peptide Ligands Incorporated into the Threefold Spike Capsid Domain to Re-Direct Gene Transduction of AAV8 and AAV9 In Vivo
Efficiency and specificity of viral vectors are vital issues in gene therapy. Insertion of peptide ligands into the adeno-associated viral (AAV) capsid at receptor binding sites can re-target AAV2-derived vectors to alternative cell types. Also, the use of serotypes AAV8 and -9 is more efficient than AAV2 for gene transfer to certain tissues in vivo. Consequently, re-targeting of these serotypes by ligand insertion could be a promising approach but has not been explored so far. Here, we generated AAV8 and -9 vectors displaying peptides in the threefold spike capsid domain. These peptides had been selected from peptide libraries displayed on capsids of AAV serotype 2 to optimize systemic gene delivery to murine lung tissue and to breast cancer tissue in PymT transgenic mice (PymT). Such peptide insertions at position 590 of the AAV8 capsid and position 589 of the AAV9 capsid changed the transduction properties of both serotypes. However, both peptides inserted in AAV8 did not result in the same changes of tissue tropism as they did in AAV2. While the AAV2 peptides selected on murine lung tissue did not alter tropism of serotypes 8 and -9, insertion of the AAV2-derived peptide selected on breast cancer tissue augmented tumor gene delivery in both serotypes. Further, this peptide mediated a strong but unspecific in vivo gene transfer for AAV8 and abrogated transduction of various control tissues for AAV9. Our findings indicate that peptide insertion into defined sites of AAV8 and -9 capsids can change and improve their efficiency and specificity compared to their wild type variants and to AAV2, making these insertion sites attractive for the generation of novel targeted vectors in these serotypes
Effect of Schistosomiasis and Soil-Transmitted Helminth Infections on Physical Fitness of School Children in Côte d'Ivoire
The burden of parasitic worm infections is considerable, particularly in developing countries. It is acknowledged that parasitic worm infections negatively impact on children's school performance and physical development. A deeper understanding of these linkages is important for updating burden of disease measures. We investigated the relationship between worm infection status and physical fitness of 156 school children from Côte d'Ivoire and controlled for potential confounding of Plasmodium infection (the causative agent of malaria) and environmental parameters (temperature and humidity). Children were diagnosed for parasitic worm and Plasmodium infections, examined by a physician, and participated in a 20 m shuttle run test to assess their maximal oxygen uptake (VO2 max) as a proxy for physical fitness. Most of the children had parasitic worms and a Plasmodium infection. Nevertheless, their physical fitness was excellent (average VO2 max: 52.7 ml kg−1 min−1). The level of VO2 max was only influenced by sex and age, but not by parasitic worms and Plasmodium infections. In future studies, the dynamics of children's physical performance should be assessed before and after control interventions, including the assessment of blood hemoglobin, hematocrit, and nutritional indicators to determine whether physical fitness in worm- and Plasmodium-infected individuals can be further improved
Age-Related Alteration of Arginase Activity Impacts on Severity of Leishmaniasis
It is well documented that ageing alters many aspects of immune responses; however, a causal relation between impaired immune functions in ageing individuals and the response to infection has not been established. Experimental leishmaniasis is an excellent model to analyse protective and pathological immune responses. Leishmania parasites are obligate intracellular pathogens and invade mainly macrophages, which have dual function: they can kill the parasites or promote their growth. We have recently shown that arginase, an enzyme induced in infected macrophages, is a key factor for parasite survival. Here, we show that ageing reduces the expression levels of arginase in macrophages, resulting in more efficient control of parasite growth. Our results suggest that age-related differences in the metabolism of arginase in macrophages might contribute to the higher susceptibility of children to leishmaniasis
A Key Role for E-cadherin in Intestinal Homeostasis and Paneth Cell Maturation
E-cadherin is a major component of adherens junctions. Impaired expression of E-cadherin in the small intestine and colon has been linked to a disturbed intestinal homeostasis and barrier function. Down-regulation of E-cadherin is associated with the pathogenesis of infections with enteropathogenic bacteria and Crohn's disease.
To genetically clarify the function of E-cadherin in intestinal homeostasis and maintenance of the epithelial defense line, the Cdh1 gene was conditionally inactivated in the mouse intestinal epithelium. Inactivation of the Cdh1 gene in the small intestine and colon resulted in bloody diarrhea associated with enhanced apoptosis and cell shedding, causing life-threatening disease within 6 days. Loss of E-cadherin led cells migrate faster along the crypt-villus axis and perturbed cellular differentiation. Maturation and positioning of goblet cells and Paneth cells, the main cell lineage of the intestinal innate immune system, was severely disturbed. The expression of anti-bacterial cryptidins was reduced and mice showed a deficiency in clearing enteropathogenic bacteria from the intestinal lumen.
These results highlight the central function of E-cadherin in the maintenance of two components of the intestinal epithelial defense: E-cadherin is required for the proper function of the intestinal epithelial lining by providing mechanical integrity and is a prerequisite for the proper maturation of Paneth and goblet cells
Successful Expansion but Not Complete Restriction of Tropism of Adeno-Associated Virus by In Vivo Biopanning of Random Virus Display Peptide Libraries
Targeting viral vectors to certain tissues in vivo has been a major challenge in gene therapy. Cell type-directed vector capsids can be selected from random peptide libraries displayed on viral capsids in vitro but so far this system could not easily be translated to in vivo applications. Using a novel, PCR-based amplification protocol for peptide libraries displayed on adeno-associated virus (AAV), we selected vectors for optimized transduction of primary tumor cells in vitro. However, these vectors were not suitable for transduction of the same target cells under in vivo conditions. We therefore performed selections of AAV peptide libraries in vivo in living animals after intravenous administration using tumor and lung tissue as prototype targets. Analysis of peptide sequences of AAV clones after several rounds of selection yielded distinct sequence motifs for both tissues. The selected clones indeed conferred gene expression in the target tissue while gene expression was undetectable in animals injected with control vectors. However, all of the vectors selected for tumor transduction also transduced heart tissue and the vectors selected for lung transduction also transduced a number of other tissues, particularly and invariably the heart. This suggests that modification of the heparin binding motif by target-binding peptide insertion is necessary but not sufficient to achieve tissue-specific transgene expression. While the approach presented here does not yield vectors whose expression is confined to one target tissue, it is a useful tool for in vivo tissue transduction when expression in tissues other than the primary target is uncritical
Recommended from our members
Does urbanization explain differences in interactions between an insect herbivore and its natural enemies and mutualists?
Urbanization can alter the composition of arthropod communities. However, little is known about how urbanization affects ecological interactions. Using experimental colonies of the black bean aphid Aphis fabae Scopoli reared on Vicia faba L, we asked if patterns of predator-prey, host-parasitoid and ant-aphid mutualisms varied along an urbanization gradient across a large town in southern England. We recorded the presence of naturally occurring predators, parasitoid wasps and mutualistic ants together with aphid abundance. We examined how biotic (green areas and plant richness) and abiotic features (impervious surfaces and distance to town center) affected (1) aphid colony size, (2) the likelihood of finding predators, mutualistic ants and aphid mummies (indicating the presence of parasitoids), and (3) how the interplay among these factors affected patterns of parasitoid attack, predator abundance, mutualistic interactions and aphid abundance. The best model to predict aphid abundance was the number of mutualistic ants attending the colonies. Aphid predators responded negatively to both the proportion of impervious surfaces and to the number of mutualistic ants farming the colonies, and positively to aphid population size, whereas parasitized aphids were found in colonies with higher numbers of aphids and ants. The number of mutualistic ants attending was positively associated with aphid colony size and negatively with the number of aphid predators. Our findings suggest that for insect-natural enemy interactions, urbanization may affect some groups, while not influencing others, and that local effects (mutualists, host plant presence) will also be key determinants of how urban ecological communities are formed
- …