219 research outputs found

    Tailored bainitic-martensitic microstructures by means of inductive surface hardening for AISI4140

    Get PDF
    Inductive surface hardening processes are widely used in the manufacturing of automotive parts. They combine short process times with high economic and energy efficiency. Because of their high surface hardness, induction hardened steel parts feature beneficial wear resistance and also good fatigue properties due to the induced compressive residual stresses in the surface. Considering the positive effects on the mechanical properties by creating a bainitic-martensitic microstructure, outlined by severel authors, this study includes the implementation of a temperature controlled inductive surface hardening process on a conventional hardening machine. Therefore an innovative inductor design, which allows a controlled sample cooling is presented. Supported by dilatometric studies as well as different heat treatment strategies, limitations are identified to gain a profund process understanding. Hereby an accelerated bainite formation after short time austenitization is detected. By using different heat treatment strategies, the fraction of the bainitic phase can be adjusted in the surface of the part made of AISI 4140. The results of this innovative heat treatment method are compared to short time inductive hardening and tempering processes regarding microstructure, hardness and residual stresses. The generated surface layer states, including mixed microstructures, show promising properties resulting in a possible enhancement of the fatigue strength of induction hardened parts

    Treatment of experimental aneurysms with a GPX embolic agent prototype: preliminary angiographic and histological results

    Get PDF
    Background Recently, liquid embolic agents have emerged for the endovascular treatment of cerebral aneurysms. Here we describe the in vivo performance of a novel liquid embolization agent (GPX Embolic Device). Methods Elastase-induced aneurysms were embolized with a GPX prototype under balloon assistance. Digital subtraction angiography was performed pre-deployment and immediately after, and at 5, 10, and 30min postdeployment in 10 rabbits and at 1month in 8 rabbits. The early post-deployment intra-aneurysmal flow was graded as unchanged, moderately diminished, or completely absent. At 1month the status of aneurysm occlusion was evaluated. Adhesion to catheter material and migration of GPX was assessed. Results The mean aneurysm neck diameter, width, and height were 3.6±1.0mm, 3.0±0.8mm, and 7.4±1.4mm, respectively. The mean dome-to-neck ratio was 0.9±0.2. Complete stagnation of intra-aneurysmal flow was observed in 9 of 10 aneurysms (90%) within 30min of device deployment. One aneurysm showed moderately diminished intra-aneurysmal flow at 30min. At 1month, 8 aneurysms were completely occluded. There was no evidence of GPX adhesion to the catheter material. Histologically, a leukocyte and foreign body reaction to GPX was detectable 28 days after embolization. Conclusions This is the first preclinical study reporting the performance of a protype version of the GPX Embolic Device in a wide-neck aneurysm model. GPX showed promising results by achieving and maintaining high rates of complete angiographic occlusion, but may induce an inflammatory reaction

    Employing electro-mechanical analogies for co-resonantly coupled cantilever sensors

    Get PDF
    Understanding the behaviour of mechanical systems can be facilitated and improved by employing electro-mechanical analogies. These analogies enable the use of network analysis tools as well as purely analytical treatment of the mechanical system translated into an electric circuit. Recently, we developed a novel kind of sensor set-up based on two coupled cantilever beams with matched resonance frequencies (co-resonant coupling) and possible applications in magnetic force microscopy and cantilever magnetometry. In order to analyse the sensor's behaviour in detail, we describe it as an electric circuit model. Starting from a simplified coupled harmonic oscillator model with neglected damping, we gradually increase the complexity of the system by adding damping and interaction elements. For each stage, various features of the coupled system are discussed and compared to measured data obtained with a co-resonant sensor. Furthermore, we show that the circuit model can be used to derive sensor parameters which are essential for the evaluation of measured data. Finally, the much more complex circuit representation of a bending beam is discussed, revealing that the simplified circuit model of a coupled harmonic oscillator is a very good representation of the sensor system

    Latest Developments from the S-DALINAC*

    Get PDF
    The S-DALINAC is a 130 MeV superconducting recirculating electron accelerator serving several nuclear and radiation physics experiments as well as driving an infrared free-electron laser. A system of normal conducting rf resonators for noninvasive beam position and current measurement was established. For the measurement of gamma-radiation inside the accelerator cave a system of Compton diodes has been developed and tested. Detailed investigations of the transverse phasespace were carried out with a tomographical reconstruction method of optical transition radiation spots. The method can be applied also to non-Gaussian phasespace distributions. The results are in good accordance with simulations. To improve the quality factor of the superconducting 3 GHz cavities, an external 2K testcryostat was commissioned. The influence of electro-chemical polishing and magnetic shielding is currently under investigation. A digital rf-feedback-system for the accelerator cavities is being developed in order to improve the energy spread of the beam of the S-DALINAC. * Supported by the BMBF under contract no. 06 DA 820, the DFG under contract no. Ri 242/12-1 and -2 and the DFG Graduiertenkolleg 'Physik und Technik von Beschleunigern

    Brain structure and neurocognitive function in two professional mountaineers during 35 days of severe normobaric hypoxia

    Get PDF
    Background and purpose Animal studies suggest that exposure to severe ambient hypoxia for several days may have beneficial long-term effects on neurodegenerative diseases. Because, the acute risks of exposing human beings to prolonged severe hypoxia on brain structure and function are uncertain, we conducted a pilot study in healthy persons. Methods We included two professional mountaineers (participants A and B) in a 35-day study comprising an acclimatization period and 14 consecutive days with oxygen concentrations between 8% and 8.8%. They underwent cerebral magnetic resonance imaging at seven time points and a cognitive test battery covering a spectrum of cognitive domains at 27 time points. We analysed blood neuron specific enolase and neurofilament light chain levels before, during, and after hypoxia. Results In hypoxia, white matter volumes increased (maximum: A, 4.3% ± 0.9%; B, 4.5% ± 1.9%) whilst gray matter volumes (A, −1.5% ± 0.8%; B, −2.5% ± 0.9%) and cerebrospinal fluid volumes (A, −2.7% ± 2.4%; B, −5.9% ± 8.2%) decreased. Furthermore, the number (A, 11–17; B, 26–126) and volumes (A, 140%; B, 285%) of white matter hyperintensities increased in hypoxia but had returned to baseline after a 3.5-month recovery phase. Diffusion weighted imaging of the white matter indicated cytotoxic edema formation. We did not observe changes in cognitive performance or biochemical brain injury markers. Discussion In highly selected healthy individuals, severe sustained normobaric hypoxia over 2 weeks elicited reversible changes in brain morphology without clinically relevant changes in cognitive function or brain injury markers. The finding may pave the way for future translational studies assessing the therapeutic potential of hypoxia in neurodegenerative diseases

    BNCI Horizon 2020 - Towards a Roadmap for Brain/Neural Computer Interaction

    Get PDF
    In this paper, we present BNCI Horizon 2020, an EU Coordination and Support Action (CSA) that will provide a roadmap for brain-computer interaction research for the next years, starting in 2013, and aiming at research efforts until 2020 and beyond. The project is a successor of the earlier EU-funded Future BNCI CSA that started in 2010 and produced a roadmap for a shorter time period. We present how we, a consortium of the main European BCI research groups as well as companies and end user representatives, expect to tackle the problem of designing a roadmap for BCI research. In this paper, we define the field with its recent developments, in particular by considering publications and EU-funded research projects, and we discuss how we plan to involve research groups, companies, and user groups in our effort to pave the way for useful and fruitful EU-funded BCI research for the next ten years
    • …
    corecore