5 research outputs found

    Are tunas relevant bioindicators of mercury concentrations in the global ocean?

    No full text
    Humans are exposed to toxic methylmercury mainly by consuming marine fish. The Minamata Convention aims at reducing anthropogenic mercury releases to protect human and ecosystem health, employing monitoring programs to meet its objectives. Tunas are suspected to be sentinels of mercury exposure in the ocean, though not evidenced yet. Here, we conducted a literature review of mercury concentrations in tropical tunas (bigeye, yellowfin, and skipjack) and albacore, the four most exploited tunas worldwide. Strong spatial patterns of tuna mercury concentrations were shown, mainly explained by fish size, and methylmercury bioavailability in marine food web, suggesting that tunas reflect spatial trends of mercury exposure in their ecosystem. The few mercury long-term trends in tunas were contrasted and sometimes disconnected to estimated regional changes in atmospheric emissions and deposition, highlighting potential confounding effects of legacy mercury, and complex reactions governing the fate of mercury in the ocean. Inter-species differences of tuna mercury concentrations associated with their distinct ecology suggest that tropical tunas and albacore could be used complementarily to assess the vertical and horizontal variability of methylmercury in the ocean. Overall, this review elevates tunas as relevant bioindicators for the Minamata Convention, and calls for large-scale and continuous mercury measurements within the international community. We provide guidelines for tuna sample collection, preparation, analyses and data standardization with recommended transdisciplinary approaches to explore tuna mercury content in parallel with observation abiotic data, and biogeochemical model outputs. Such global and transdisciplinary biomonitoring is essential to explore the complex mechanisms of the marine methylmercury cycle

    Mercury concentrations in tuna blood and muscle mirror seawater methylmercury in the Western and Central Pacific Ocean

    No full text
    International audienceUnderstanding the relationship between mercury in seafood and the distribution of oceanic methylmercury is key to understand human mercury exposure. Here, we determined mercury concentrations in muscle and blood of bigeye and yellowfin tunas from the Western and Central Pacific. Results showed similar latitudinal patterns in tuna blood and muscle, indicating that both tissues are good candidates for mercury monitoring. Complementary tuna species analyses indicated species- and tissue- specific mercury patterns, highlighting differences in physiologic processes of mercury uptake and accumulation associated with tuna vertical habitat. Tuna mercury content was correlated to ambient seawater methylmercury concentrations, with blood being enriched at a higher rate than muscle with increasing habitat depth. The consideration of a significant uptake of dissolved methylmercury from seawater in tuna, in addition to assimilation from food, might be interesting to test in models to represent the spatiotemporal evolutions of mercury in tuna under different mercury emission scenarios

    Revealing the environmental pollution of two estuaries through histopathological biomarkers in five fishes from different trophic guilds of northeastern Brazil

    No full text
    Estuaries in Brazil are mostly anthropically affected due to the discharge of industrial and domestic effluents. In two of them, the Santa Cruz Channel Estuary (ITAP) and Sirinhae & PRIME;m River Estuary (SIR), historically affected by mercury pollution and sugarcane industry in Northeast Brazil, we assessed environmental pollution using liver and gill histopathological biomarkers in fish from different trophic levels. Liver samples exhibited serious damages such as hepatic steatosis, necrosis, and infiltration. The gills showed moderate to severe changes, such as lifting of epithelial cells, lamellar aneurysm, and rupture of lamellar epithelium. Most of the changes in the liver and gills were reported for species Centropomus undecimalis and the Gobionellus stomatus, which were considered as good sentinels of pollution. The combination of biomarker methodologies was efficient in diagnosing the serious damage to the species, reinforcing the need for monitoring the health of the ecosystems evaluated

    ENSO climate forcing of the marine mercury cycle in the Peruvian Upwelling Zone Does Not Affect Methylmercury Levels of Marine Avian Top Predators

    No full text
    Publisher: American Chemical SocietyInternational audienceClimate change is expected to affect marine mercury (Hg) biogeochemistry and biomagnification. Recent modeling work suggested that ocean warming increases methylmercury (MeHg) levels in fish. Here, we studied the influence of El Niño Southern Oscillations (ENSO) on Hg concentrations and stable isotopes in time series of seabird blood from the Peruvian upwelling and oxygen minimum zone. Between 2009 and 2016, La Niña (2011) and El Niño conditions (2015–2016) were accompanied by sea surface temperature anomalies up to 3 °C, oxycline depth change (20–100 m), and strong primary production gradients. Seabird Hg levels were stable and did not co-vary significantly with oceanographic parameters, nor with anchovy biomass, the primary dietary source to seabirds (90%). In contrast, seabird Δ199^{199}Hg, proxy for marine photochemical MeHg breakdown, and δ15^{15}N showed strong interannual variability (up to 0.8 and 3‰, respectively) and sharply decreased during El Niño. We suggest that lower Δ199^{199}Hg during El Niño represents reduced MeHg photodegradation due to the deepening of the oxycline. This process was balanced by equally reduced Hg methylation due to reduced productivity, carbon export, and remineralization. The non-dependence of seabird MeHg levels on strong ENSO variability suggests that marine predator MeHg levels may not be as sensitive to climate change as is currently thought
    corecore