113 research outputs found

    The general Leigh-Strassler deformation and integrability

    Full text link
    The success of the identification of the planar dilatation operator of N=4 SYM with an integrable spin chain Hamiltonian has raised the question if this also is valid for a deformed theory. Several deformations of SYM have recently been under investigation in this context. In this work we consider the general Leigh-Strassler deformation. For the generic case the S-matrix techniques cannot be used to prove integrability. Instead we use R-matrix techniques to study integrability. Some new integrable points in the parameter space are found.Comment: 22 pages, 8 figures, reference adde

    Integrable Spin Chains with U(1)^3 symmetry and generalized Lunin-Maldacena backgrounds

    Full text link
    We consider the most general three-state spin chain with U(1)^3 symmetry and nearest neighbour interaction. Our model contains as a special case the spin chain describing the holomorphic three scalar sector of the three parameter complex deformation of N=4 SYM, dual to type IIB string theory in the generalized Lunin-Maldacena backgrounds discovered by Frolov. We formulate the coordinate space Bethe ansatz, calculate the S-matrix and determine for which choices of parameters the S-matrix fulfills the Yang-Baxter equations. For these choices of parameters we furthermore write down the R-matrix. We find in total four classes of integrable models. In particular, each already known model of the above type is nothing but one in a family of such models.Comment: 16 pages, 3 figures, references correcte

    The coherent {\it d}-wave superconducting gap in underdoped La2−x_{2-x}Srx_{x}CuO4_4 as studied by angle-resolved photoemission

    Full text link
    We present angle-resolved photoemission spectroscopy (ARPES) data on moderately underdoped La1.855_{1.855}Sr0.145_{0.145}CuO4_4 at temperatures below and above the superconducting transition temperature. Unlike previous studies of this material, we observe sharp spectral peaks along the entire underlying Fermi surface in the superconducting state. These peaks trace out an energy gap that follows a simple {\it d}-wave form, with a maximum superconducting gap of 14 meV. Our results are consistent with a single gap picture for the cuprates. Furthermore our data on the even more underdoped sample La1.895_{1.895}Sr0.105_{0.105}CuO4_4 also show sharp spectral peaks, even at the antinode, with a maximum superconducting gap of 26 meV.Comment: Accepted by Phys. Rev. Let

    Three-Dimensional Fermi Surface of Overdoped La-Based Cuprates

    Get PDF
    We present a soft x-ray angle-resolved photoemission spectroscopy study of the overdoped high-temperature superconductors La2−x_{2-x}Srx_xCuO4_4 and La1.8−x_{1.8-x}Eu0.2_{0.2}Srx_xCuO4_4. In-plane and out-of-plane components of the Fermi surface are mapped by varying the photoemission angle and the incident photon energy. No kzk_z dispersion is observed along the nodal direction, whereas a significant antinodal kzk_z dispersion is identified. Based on a tight-binding parametrization, we discuss the implications for the density of states near the van-Hove singularity. Our results suggest that the large electronic specific heat found in overdoped La2−x_{2-x}Srx_xCuO4_4 can not be assigned to the van-Hove singularity alone. We therefore propose quantum criticality induced by a collapsing pseudogap phase as a plausible explanation for observed enhancement of electronic specific heat

    Uniqueness of the asymptotic AdS3 geometry

    Get PDF
    We explicitly show that in (2+1) dimensions the general solution of the Einstein equations with negative cosmological constant on a neigbourhood of timelike spatial infinity can be obtained from BTZ metrics by coordinate transformations corresponding geometrically to deformations of their spatial infinity surface. Thus, whatever the topology and geometry of the bulk, the metric on the timelike extremities is BTZ.Comment: LaTeX, 8 pages, no figures, version that will appear in Class. Quant. Gra

    Quantum Symmetries and Marginal Deformations

    Full text link
    We study the symmetries of the N=1 exactly marginal deformations of N=4 Super Yang-Mills theory. For generic values of the parameters, these deformations are known to break the SU(3) part of the R-symmetry group down to a discrete subgroup. However, a closer look from the perspective of quantum groups reveals that the Lagrangian is in fact invariant under a certain Hopf algebra which is a non-standard quantum deformation of the algebra of functions on SU(3). Our discussion is motivated by the desire to better understand why these theories have significant differences from N=4 SYM regarding the planar integrability (or rather lack thereof) of the spin chains encoding their spectrum. However, our construction works at the level of the classical Lagrangian, without relying on the language of spin chains. Our approach might eventually provide a better understanding of the finiteness properties of these theories as well as help in the construction of their AdS/CFT duals.Comment: 1+40 pages. v2: minor clarifications and references added. v3: Added an appendix, fixed minor typo

    Neutron powder diffraction study of NaMn2_2O4_4 and Li0.92_{0.92}Mn2_2O4_4: New insights on spin-charge-orbital ordering

    Get PDF
    The high-pressure synthesized quasi-one-dimensional compounds NaMn2_2O4_4 and Li0.92_{0.92}Mn2_2O4_4 are both antiferromagnetic insulators, and here their atomic and magnetic structures were investigated using neutron powder diffraction. The present crystal structural analyses of NaMn2O4 reveal that Mn3+/Mn4+ charge-ordering state exist even at low temperature (down to 1.5 K). It is evident from one of the Mn sites shows a strongly distorted Mn3+ octahedra due to the Jahn-Teller effect. Above TN = 39 K, a two-dimensional short-range correlation is observed, as indicated by an asymmetric diffuse scattering. Below TN, two antiferromagnetic transitions are observed (i) a commensurate long-range Mn3+ spin ordering below 39 K, and (ii) an incommensurate Mn4+ spin ordering below 10 K. The commensurate magnetic structure (kC = 0.5, -0.5, 0.5) follows the magnetic anisotropy of the local easy axes of Mn3+, while the incommensurate one shows a spin-density-wave order with kIC = (0,0,0.216). For Li0.92_{0.92}Mn2_2O4_4, on the other hand, absence of a long-range spin ordered state down to 1.5 K is confirmed.Comment: 11 pages, 8 figure

    The dual string sigma-model of the SU_q(3) sector

    Full text link
    In four-dimensional N=4 super Yang-Mills (SYM) the SU(3) sub-sector spanned by purely holomorphic fields is isomorphic to the corresponding mixed one spanned by both holomorphic and antiholomorphic fields. This is no longer the case when one considers the marginally deformed N=4 SYM. The mixed SU(3) sector marginally deformed by a complex parameter beta, i.e. SU_q(3) with q=e^{2 i\pi\beta}, has been shown to be integrable at one-loop hep-th/0703150, while it is not the case for the corresponding purely holomorphic one. Moreover, the marginally deformed N=4 SYM also has a gravity dual constructed by Lunin and Maldacena in hep-th/0502086. However, the mixed SU_q(3) sector has not been studied from the supergravity point of view. Hence in this note, for the case of purely imaginary marginal ÎČ\beta-deformations, we compute the superstring SU_q(3) \sigma-model in the fast spinning string limit and show that, for rational spinning strings, it reproduces the energy computed via Bethe equations.Comment: 20 page

    Anisotropic quasiparticle scattering rates in slightly underdoped to optimally doped high-temperature \LSCO\ superconductors

    Full text link
    An angle-resolved photoemission study of the scattering rate in the superconducting phase of the high-temperature superconductor \LSCO\ with x=0.145x=0.145 and x=0.17x=0.17, as a function of binding energy and momentum, is presented. We observe that the scattering rate scales linearly with binding energy up to the high-energy scale E1∌0.4E_1\sim0.4 eV. The scattering rate is found to be strongly anisotropic, with a minimum along the (0,0)-(π,π\pi,\pi) direction. A possible connection to a quantum-critical point is discussed.Comment: Final version published in PR

    Rotation symmetry breaking in La2−xSrxCuO4{\mathrm{La}}_{2-x}{\mathrm{Sr}}_{x}{\mathrm{CuO}}_{4} revealed by angle-resolved photoemission spectroscopy

    Get PDF
    Using angle-resolved photoemission spectroscopy it is revealed that in the vicinity of optimal doping the electronic structure of La2−xSrxCuO4 cuprate undergoes an electronic reconstruction associated with a wave vector qa=(π,0). The reconstructed Fermi surface and folded band are distinct to the shadow bands observed in BSCCO cuprates and in underdoped La2−xSrxCuO4 with x≀0.12, which shift the primary band along the zone diagonal direction. Furthermore, the folded bands appear only with qa=(π,0) vector, but not with qb=(0,π). We demonstrate that the absence of qb reconstruction is not due to the matrix-element effects in the photoemission process, which indicates the fourfold symmetry is broken in the system
    • 

    corecore