267 research outputs found

    Metabolic Equivalent in Adolescents, Active Adults and Pregnant Women.

    Get PDF
    "Metabolic Equivalent" (MET) represents a standard amount of oxygen consumed by the body under resting conditions, and is defined as 3.5 mL O₂/kg × min or ~1 kcal/kg × h. It is used to express the energy cost of physical activity in multiples of MET. However, universal application of the 1-MET standard was questioned in previous studies, because it does not apply well to all individuals. Height, weight and resting metabolic rate (RMR, measured by indirect calorimetry) were measured in adolescent males (n = 50) and females (n = 50), women during pregnancy (gestation week 35-41, n = 46), women 24-53 weeks postpartum (n = 27), and active men (n = 30), and were compared to values predicted by the 1-MET standard. The RMR of adolescent males (1.28 kcal/kg × h) was significantly higher than that of adolescent females (1.11 kcal/kg × h), with or without the effects of puberty stage and physical activity levels. The RMR of the pregnant and post-pregnant subjects were not significantly different. The RMR of the active normal weight (0.92 kcal/kg × h) and overweight (0.89 kcal/kg × h) adult males were significantly lower than the 1-MET value. It follows that the 1-MET standard is inadequate for use not only in adult men and women, but also in adolescents and physically active men. It is therefore recommended that practitioners estimate RMR with equations taking into account individual characteristics, such as sex, age and Body Mass Index, and not rely on the 1-MET standard

    Correlation of conductivity and angle integrated valence band photoemission characteristics in single crystal iron perovskites for 300 K < T < 800 K: Comparison of surface and bulk sensitive methods

    Full text link
    A single crystal monolith of La0.9Sr0.1FeO3 and thin pulsed laser deposited film of La0.8Sr0.2Fe0.8Ni0.2O3 were subject to angle integrated valence band photoemission spectroscopy in ultra high vacuum and conductivity experiments in ambient air at temperatures from 300 K to 800 K. Except for several sputtering and annealing cycles, the specimen were not prepared in-situ.. Peculiar changes in the temperature dependent, bulk representative conductivity profile as a result of reversible phase transitions, and irreversible chemical changes are semi-quantitatively reflected by the intensity variation in the more surface representative valence band spectra near the Fermi energy. X-ray photoelectron diffraction images reflect the symmetry as expected from bulk iron perovskites. The correlation of spectral details in the valence band photoemission spectra (VB PES) and details of the conductivity during temperature variation suggest that valuable information on electronic structure and transport properties of complex materials may be obtained without in-situ preparation

    Long-term organic matter application reduces cadmium but not zinc concentrations in wheat

    Get PDF
    Wheat is a staple food crop and a major source of both the essential micronutrient zinc (Zn) and the toxic heavy metal cadmium (Cd) for humans. Since Zn and Cd are chemically similar, increasing Zn concentrations in wheat grains (biofortification), while preventing Cd accumulation, is an agronomic challenge. We used two Swiss agricultural long-term field trials, the “Dynamic-Organic-Conventional System Comparison Trial” (DOK) and the “Zurich Organic Fertilization Experiment” (ZOFE), to investigate the impact of long-term organic, mineral and combined fertilizer inputs on total and phytoavailable concentrations of soil Zn and Cd and their accumulation in winter wheat ( L.). “Diffusive gradients in thin films” (DGT) and diethylene-triaminepentaacetic acid (DTPA) extraction were used as proxies for plant available soil metals. Compared to unfertilized controls, long-term organic fertilization with composted manure or green waste compost led to higher soil organic carbon, cation exchange capacity and pH, while DGT-available Zn and Cd concentrations were reduced. The DGT method was a strong predictor of shoot and grain Cd, but not Zn concentrations. Shoot and grain Zn concentrations correlated with DTPA-extractable and total soil Zn concentrations in the ZOFE, but not the DOK trial. Long-term compost fertilization led to lower accumulation of Cd in wheat grains, but did not affect grain Zn. Therefore, Zn/Cd ratios in the grains increased. High Zn and Cd inputs with organic fertilizers and high Cd inputs with phosphate fertilizers led to positive Zn and Cd mass balances when taking into account atmospheric deposition and fertilizer inputs. On the other hand, mineral fertilization led to the depletion of soil Zn due to higher yields and thus higher Zn exports than under organic management. The study supports the use of organic fertilizers for reducing Cd concentrations of wheat grains in the long-term, given that the quality of the fertilizers is guaranteed

    Alterations in energy balance from an exercise intervention with ad libitum food intake.

    Get PDF
    Better understanding is needed regarding the effects of exercise alone, without any imposed dietary regimens, as a single tool for body-weight regulation. Thus, we evaluated the effects of an 8-week increase in activity energy expenditure (AEE) on ad libitum energy intake (EI), body mass and composition in healthy participants with baseline physical activity levels (PAL) in line with international recommendations. Forty-six male adults (BMI = 19·7-29·3 kg/m(2)) participated in an intervention group, and ten (BMI = 21·0-28·4 kg/m(2)) in a control group. Anthropometric measures, cardiorespiratory fitness, EI, AEE and exercise intensity were recorded at baseline and during the 1st, 5th and 8th intervention weeks, and movement was recorded throughout. Body composition was measured at the beginning and at the end of the study, and resting energy expenditure was measured after the study. The intervention group increased PAL from 1·74 (se 0·03) to 1·93 (se 0·03) (P &lt; 0·0001) and cardiorespiratory fitness from 41·4 (se 0·9) to 45·7 (se 1·1) ml O2/kg per min (P = 0·001) while decreasing body mass (-1·36 (se 0·2) kg; P = 0·001) through adipose tissue mass loss (ATM) (-1·61 (se 0·2) kg; P = 0·0001) compared with baseline. The control group did not show any significant changes in activity, body mass or ATM. EI was unchanged in both groups. The results indicate that in normal-weight and overweight men, increasing PAL from 1·7 to 1·9 while keeping EI ad libitum over an 8-week period produces a prolonged negative energy balance. Replication using a longer period (and/or more intense increase in PAL) is needed to investigate if and at what body composition the increase in AEE is met by an equivalent increase in EI

    PathOrganic – Risks and Recommendations Regarding Human Pathogens in Organic Vegetable Production Chains

    Get PDF
    PathOrganic assesses risks associated with the consumption of fresh and minimally processed vegetables due to the prevalence of bacterial human pathogens in plant produce. The project evaluates whether organic production poses a risk on food safety, taking into consideration sources of pathogen transmission (e.g. animal manure). The project also explores whether organic versus conventional production practices may reduce the risk of pathogen manifestation. In Europe, vegetable-linked outbreaks are not well investigated. A conceptual model together with novel sampling strategies and specifically adjusted methods provides the basis for large-scale surveys of organically grown plant produce in five European countries. Critical control points are determined and evaluated and factors contributing to a food safety problem are analyzed in greenhouse and field experiments. The project aims at developing a quantitative risk assessment model and at formulating recommendations for improving food safety in organic vegetable production

    ac-Field-Controlled Anderson Localization in Disordered Semiconductor Superlattices

    Full text link
    An ac field, tuned exactly to resonance with the Stark ladder in an ideal tight binding lattice under strong dc bias, counteracts Wannier-Stark localization and leads to the emergence of extended Floquet states. If there is random disorder, these states localize. The localization lengths depend non-monotonically on the ac field amplitude and become essentially zero at certain parameters. This effect is of possible relevance for characterizing the quality of superlattice samples, and for performing experiments on Anderson localization in systems with well-defined disorder.Comment: 10 pages, Latex; figures available on request from [email protected]

    An integrative environmental pollen diversity assessment and its importance for the Sustainable Development Goals

    Get PDF
    Pollen is at once intimately part of the reproductive cycle of seed plants and simultaneously highly relevant for the environment (pollinators, vector for nutrients, or organisms), people (food safety and health), and climate (cloud condensation nuclei and climate reconstruction). We provide an interdisciplinary perspective on the many and connected roles of pollen to foster a better integration of the currently disparate fields of pollen research, which would benefit from the sharing of general knowledge, technical advancements, or data processing solutions. We propose a more interdisciplinary and holistic research approach that encompasses total environmental pollen diversity (ePD) (wind and animal and occasionally water distributed pollen) at multiple levels of diversity (genotypic, phenotypic, physiological, chemical, and functional) across space and time. This interdisciplinary approach holds the potential to contribute to pressing human issues, including addressing United Nations Sustainable Development Goals, fostering social and political awareness of these tiny yet important and fascinating particles

    Impacts of organic and conventional crop management on diversity and activity of free-living nitrogen fixing bacteria and total bacteria are subsidiary to temporal effects

    Get PDF
    A three year field study (2007-2009) of the diversity and numbers of the total and metabolically active free-living diazotophic bacteria and total bacterial communities in organic and conventionally managed agricultural soil was conducted at the Nafferton Factorial Systems Comparison (NFSC) study, in northeast England. The result demonstrated that there was no consistent effect of either organic or conventional soil management across the three years on the diversity or quantity of either diazotrophic or total bacterial communities. However, ordination analyses carried out on data from each individual year showed that factors associated with the different fertility management measures including availability of nitrogen species, organic carbon and pH, did exert significant effects on the structure of both diazotrophic and total bacterial communities. It appeared that the dominant drivers of qualitative and quantitative changes in both communities were annual and seasonal effects. Moreover, regression analyses showed activity of both communities was significantly affected by soil temperature and climatic conditions. The diazotrophic community showed no significant change in diversity across the three years, however, the total bacterial community significantly increased in diversity year on year. Diversity was always greatest during March for both diazotrophic and total bacterial communities. Quantitative analyses using qPCR of each community indicated that metabolically active diazotrophs were highest in year 1 but the population significantly declined in year 2 before recovering somewhat in the final year. The total bacterial population in contrast increased significantly each year. Seasonal effects were less consistent in this quantitative study
    corecore