31 research outputs found

    Inherited Thyroid Tumors With Oncocytic Change

    Get PDF
    Familial non-medullary thyroid carcinoma (FNMTC) corresponds to 5-10% of all follicular cell-derived carcinoma (FCDTC). Oncocytic thyroid tumors have an increased incidence in the familial context in comparison with sporadic FCDTC, encompassing benign and malignant tumors in the same family presenting with some extent of cell oxyphilia. This has triggered the interest of our and other groups to clarify the oncocytic change, looking for genetic markers that could explain the emergence of this phenotype in thyroid benign and malignant lesions, focusing on familial aggregation. Despite some advances regarding the identification of the gene associated with retinoic and interferon-induced mortality 19 (GRIM-19), as one of the key candidate genes affected in the “Tumor with Cell Oxyphilia” (TCO) locus, most of the mutations follow a pattern of “private mutations”, almost exclusive to one family. Moreover, no causative genetic alterations were identified so far in most families. The incomplete penetrance of the disease, the diverse benign and malignant phenotypes in the affected familial members and the variable syndromic associations create an additional layer of complexity for studying the genetic alterations in oncocytic tumors. In the present review, we summarized the available evidence supporting genomic-based mechanisms for the oncocytic change, particularly in the context of FNMTC. We have also addressed the challenges and gaps in the aforementioned mechanisms, as well as molecular clues that can explain, at least partially, the phenotype of oncocytic tumors and the respective clinico-pathological behavior. Finally, we pointed to areas of further investigation in the field of oncocytic (F)NMTC with translational potential in terms of therapy

    Core I gene is overexpressed in Hürthle and non-Hürthle cell microfollicular adenomas and follicular carcinomas of the thyroid

    Get PDF
    BACKGROUND: Most of the steps involved in the initiation and progression of Hürthle (oncocytic, oxyphilic) cell carcinomas of the thyroid remain unknown. METHODS: Using differential display and semiquantitative RT-PCR we found, among other alterations, overexpression of the gene encoding the Core I subunit of the complex III of the mitochondrial respiratory chain in a follicular carcinoma composed of Hürthle cells. RESULTS: Similar high levels of Core I gene expression were detected in nine follicular carcinomas (seven with Hürthle cell features), in seven microfollicular adenomas (one with Hürthle cell features) and in one micro/macrofollicular adenoma, in contrast to a lower/normal expression in nine papillary carcinomas (three with Hürthle cell features) and five macrofollicular adenomas (one of which displaying Hürthle cell features). No significative correlation was found between Core I overexpression and the proliferative activity of the lesions. CONCLUSIONS: We conclude that Core I overexpression in thyroid tumours is not associated with malignancy, Hürthle cells or proliferative activity. The pathogenetic mechanism linking Core I overexpression to the microfollicular pattern of growth of thyroid tumours remains to be clarified

    Performance of the Bethesda system for reporting thyroid cytology in multi-institutional large cohort of pediatric thyroid nodules: a detailed analysis

    Get PDF
    Background: To evaluate the performance of TBSRTC through multi-institutional experience in the paediatric population and questioning the management recommendation of ATA Guidelines Task Force on Paediatric Thyroid Cancer; Methods: A retrospective search was conducted in 4 institutions to identify consecutive thyroid FNAC cases in paediatric population between 2000 and 2018. Following the 2nd TBSRTC, the risk of malignancy ratios (ROMs) was given in ranges and calculated by 2 different ways. Sensitivity, specificity, PPV, NPV and DA ratios were calculated using histologic diagnosis as the gold standard; Results: Among a total of 405 specimens, the distribution of cases for each category was, 44 (11%) for ND, 204 (50%) for B category, 40 (10%) for AUS/FLUS, 36 (9%) for FN/SFN, 24 (6%) for SFM and 57 (14%) for M categories. 153 cases have a histological diagnosis. The ratio of surgery was 23% in ND, 16% in the B, 45% for AUS/FLUS, 75% for SFN/FN and 92% for SFM and 75% in M categories; Conclusions: The data underlines the high ROM values in paediatric population which might be clinically meaningful. The high rate of malignancy of the cohort of operated patients (50%) also underlines the need of better preoperative indicators for stratification. Considering that more than half of the nodules in AUS/FLUS category were benign, direct surgery recommendation could be questionable as proposed in ATA 2015 guidelines.info:eu-repo/semantics/publishedVersio

    Genetic Alterations in Poorly Differentiated and Undifferentiated Thyroid Carcinomas

    Get PDF
    Thyroid gland presents a wide spectrum of tumours derived from follicular cells that range from well differentiated, papillary and follicular carcinoma (PTC and FTC, respectively), usually carrying a good prognosis, to the clinically aggressive, poorly differentiated (PDTC) and undifferentiated thyroid carcinoma (UTC)

    Frequency of TERT promoter mutations in human cancers

    Get PDF
    Reactivation of telomerase has been implicated in human tumorigenesis, but the underlying mechanisms remain poorly understood. Here we report the presence of recurrent somatic mutations in the TERT promoter in cancers of the central nervous system (43%), bladder (59%), thyroid (follicular cell-derived, 10%) and skin (melanoma, 29%). In thyroid cancers, the presence of TERT promoter mutations (when occurring together with BRAF mutations) is significantly associated with higher TERT mRNA expression, and in glioblastoma we find a trend for increased telomerase expression in cases harbouring TERT promoter mutations. Both in thyroid cancers and glioblastoma, TERT promoter mutations are significantly associated with older age of the patients. Our results show that TERT promoter mutations are relatively frequent in specific types of human cancers, where they lead to enhanced expression of telomerase.We thank to Mrs Mafalda Rocha for the excellent technical support in the sequencing work. This work was partially supported by the Portuguese Science and Technology Foundation (FCT) through BPD (SFRH/BPD/85249/2012 to H. P.), PhD (SFRH/BD/81940/2011 to J.V. and SFRH/BD/79135/2011 to A. A.) and BI grants, and the grant through the Program Ciencia 2008 (J.L.) and the project (PIC/IC/83037/2007). Further funding was obtained from the project 'Microenvironment, metabolism and cancer' partially supported by Programa Operacional Regional do Norte (ON.2-O Novo Norte), under the Quadro de Referencia Estrategico Nacional (QREN), and through the Fundo Europeu de Desenvolvimento Regional (FEDER). IPATIMUP is an associate laboratory of the Portuguese Ministry of Science, Technology and Higher Education and is partially supported by the FCT

    TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas

    Get PDF
    Funding: This study was supported by the Portuguese Foundation for Science and Technology through PhD Grant SFRH/BD/81940/ 2011 (to J.V.); PhD Grant SFRH/BD/87887/2012 (to C.T.); PhD Grant SFRH/BD/79135/2011 (to A.A.); and the Scientific Investigation Project PIC/IC/83037/2007. Further funding was obtained from the project “Microenvironment, Metabolism and Cancer,” partially supported by Programa Operacional Regional do Norte (ON.2-O Novo Norte), under the Quadro de Referência Estratégico Nacional, and through the European Regional Development Fund. The work of J.M.C.-T. was supported by Grant PI12/00749-FEDER from the Instituto de Salud Carlos III, the Ministry of Economy and Competitiveness (Madrid, Spain). The Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) is an associate laboratory of the Portuguese Ministry of Science, Technology, and Higher Education, which is partially supported by the Foundation for Science and Technology.Context: Telomerase promoter mutations (TERT) were recently described in follicular cell-derived thyroid carcinomas (FCDTC) and seem to be more prevalent in aggressive cancers. Objectives:Weaimed to evaluate the frequency of TERT promoter mutations in thyroid lesions and to investigate the prognostic significance of such mutations in a large cohort of patients with differentiated thyroid carcinomas (DTCs). Design: This was a retrospective observational study. Setting and Patients: We studied 647 tumors and tumor-like lesions. A total of 469 patients with FCDTC treated and followed in five university hospitals were included. Mean follow-up (±SD) was 7.8 ± 5.8 years. Main Outcome Measures: Predictive value of TERT promoter mutations for distant metastasization, disease persistence at the end of follow-up, and disease-specific mortality. Results: TERT promoter mutations were found in 7.5% of papillary carcinomas (PTCs), 17.1% of follicular carcinomas, 29.0% of poorly differentiated carcinomas, and 33.3% of anaplastic thyroid carcinomas. Patients with TERT-mutated tumors were older (P < .001) and had larger tumors (P = .002). In DTCs, TERT promoter mutations were significantly associated with distant metastases (P< .001) and higher stage (P < .001). Patients with DTC harboring TERT promoter mutations were submitted to more radioiodine treatments (P = .009) with higher cumulative dose (P = .004) and to more treatment modalities (P=.001). At the end of follow-up, patients with TERT-mutated DTCs were more prone to have persistent disease (P=.001). TERT promoter mutations were significantly associated with disease-specific mortality [in the whole FCDTC (P < .001)] in DTCs (P < .001), PTCs (P = .001), and follicular carcinomas (P < .001). After adjusting for age at diagnosis and gender, the hazard ratio was 10.35 (95% confidence interval 2.01-53.24; P = .005) in DTC and 23.81 (95% confidence interval 1.36-415.76; P = .03) in PTCs. Conclusions: TERT promoter mutations are an indicator of clinically aggressive tumors, being correlated with worse outcome and disease-specific mortality in DTC. TERT promoter mutations have an independent prognostic value in DTC and, notably, in PTC.publishersversionpublishe

    Validation of a Novel, Sensitive, and Specific Urine-Based Test for Recurrence Surveillance of Patients With Non-Muscle-Invasive Bladder Cancer in a Comprehensive Multicenter Study

    Get PDF
    Bladder cancer (BC), the most frequent malignancy of the urinary system, is ranked the sixth most prevalent cancer worldwide. Of all newly diagnosed patients with BC, 70-75% will present disease confined to the mucosa or submucosa, the non-muscle-invasive BC (NMIBC) subtype. Of those, approximately 70% will recur after transurethral resection (TUR). Due to high rate of recurrence, patients are submitted to an intensive follow-up program maintained throughout many years, or even throughout life, resulting in an expensive follow-up, with cystoscopy being the most cost-effective procedure for NMIBC screening. Currently, the gold standard procedure for detection and follow-up of NMIBC is based on the association of cystoscopy and urine cytology. As cystoscopy is a very invasive approach, over the years, many different noninvasive assays (both based in serum and urine samples) have been developed in order to search genetic and protein alterations related to the development, progression, and recurrence of BC. TERT promoter mutations and FGFR3 hotspot mutations are the most frequent somatic alterations in BC and constitute the most reliable biomarkers for BC. Based on these, we developed an ultra-sensitive, urine-based assay called Uromonitor®, capable of detecting trace amounts of TERT promoter (c.1-124C > T and c.1-146C > T) and FGFR3 (p.R248C and p.S249C) hotspot mutations, in tumor cells exfoliated to urine samples. Cells present in urine were concentrated by the filtration of urine through filters where tumor cells are trapped and stored until analysis, presenting long-term stability. Detection of the alterations was achieved through a custom-made, robust, and highly sensitive multiplex competitive allele-specific discrimination PCR allowing clear interpretation of results. In this study, we validate a test for NMIBC recurrence detection, using for technical validation a total of 331 urine samples and 41 formalin-fixed paraffin-embedded tissues of the primary tumor and recurrence lesions from a large cluster of urology centers. In the clinical validation, we used 185 samples to assess sensitivity/specificity in the detection of NMIBC recurrence vs. cystoscopy/cytology and in a smaller cohort its potential as a primary diagnostic tool for NMIBC. Our results show this test to be highly sensitive (73.5%) and specific (93.2%) in detecting recurrence of BC in patients under surveillance of NMIBC.info:eu-repo/semantics/publishedVersio

    Telomerase promoter mutations in cancer: an emerging molecular biomarker?

    Get PDF
    João Vinagre, Vasco Pinto and Ricardo Celestino contributed equally to the manuscript.Cell immortalization has been considered for a long time as a classic hallmark of cancer cells. Besides telomerase reactivation, such immortalization could be due to telomere maintenance through the “alternative mechanism of telomere lengthening” (ALT) but the mechanisms underlying both forms of reactivation remained elusive. Mutations in the coding region of telomerase gene are very rare in the cancer setting, despite being associated with some degenerative diseases. Recently, mutations in telomerase (TERT) gene promoter were found in sporadic and familial melanoma and subsequently in several cancer models, notably in gliomas, thyroid cancer and bladder cancer. The importance of these findings has been reinforced by the association of TERT mutations in some cancer types with tumour aggressiveness and patient survival. In the first part of this review, we summarize the data on the biology of telomeres and telomerase, available methodological approaches and non-neoplastic diseases associated with telomere dysfunction. In the second part, we review the information on telomerase expression and genetic alterations in the most relevant types of cancer (skin, thyroid, bladder and central nervous system) on record, and discuss the value of telomerase as a new biomarker with impact on the prognosis and survival of the patients and as a putative therapeutic target

    Somatic mitochondrial DNA mutations in cancer escape purifying selection and high pathogenicity mutations lead to the oncocytic phenotype: pathogenicity analysis of reported somatic mtDNA mutations in tumors

    No full text
    Abstract Background The presence of somatic mitochondrial DNA (mtDNA) mutations in cancer cells has been interpreted in controversial ways, ranging from random neutral accumulation of mutations, to positive selection for high pathogenicity, or conversely to purifying selection against high pathogenicity variants as occurs at the population level. Methods Here we evaluated the predicted pathogenicity of somatic mtDNA mutations described in cancer and compare these to the distribution of variations observed in the global human population and all possible protein variations that could occur in human mtDNA. We focus on oncocytic tumors, which are clearly associated with mitochondrial dysfunction. The protein variant pathogenicity was predicted using two computational methods, MutPred and SNPs&GO. Results The pathogenicity score of the somatic mtDNA variants were significantly higher in oncocytic tumors compared to non-oncocytic tumors. Variations in subunits of Complex I of the electron transfer chain were significantly more common in tumors with the oncocytic phenotype, while variations in Complex V subunits were significantly more common in non-oncocytic tumors. Conclusions Our results show that the somatic mtDNA mutations reported over all tumors are indistinguishable from a random selection from the set of all possible amino acid variations, and have therefore escaped the effects of purifying selection that act strongly at the population level. We show that the pathogenicity of somatic mtDNA mutations is a determining factor for the oncocytic phenotype. The opposite associations of the Complex I and Complex V variants with the oncocytic and non-oncocytic tumors implies that low mitochondrial membrane potential may play an important role in determining the oncocytic phenotype.</p
    corecore