58 research outputs found

    Long-term effects of tafamidis for the treatment of transthyretin familial amyloid polyneuropathy

    Get PDF
    Tafamidis, a transthyretin (TTR) kinetic stabilizer, delayed neuropathic progression in patients with Val30Met TTR familial amyloid polyneuropathy (TTR-FAP) in an 18-month randomized controlled trial (study Fx-005). This 12-month, open-label extension study evaluated the long-term safety, tolerability, and efficacy of tafamidis 20 mg once daily in 86 patients who earlier received blinded treatment with tafamidis or placebo. Efficacy measures included the Neuropathy Impairment Score in the Lower Limbs (NIS-LL), Norfolk Quality of Life-Diabetic Neuropathy total quality of life (TQOL) score, and changes in neurologic function and nutritional status. We quantified the monthly rates of change in efficacy measures, and TTR stabilization, and monitored adverse events (AEs). Patients who continued on tafamidis had stable rates of change in NIS-LL (from 0.08 to 0.11/month; p = 0.60) and TQOL (from −0.03 to 0.25; p = 0.16). In patients switched from placebo, the monthly rate of change in NIS-LL declined (from 0.34 to 0.16/month; p = 0.01), as did TQOL score (from 0.61 to −0.16; p < 0.001). Patients treated with tafamidis for 30 months had 55.9 % greater preservation of neurologic function as measured by the NIS-LL than patients in whom tafamidis was initiated later. Plasma TTR was stabilized in 94.1 % of patients treated with tafamidis for 30 months. AEs were similar between groups; no patients discontinued because of an AE. Long-term tafamidis was well tolerated, with the reduced rate of neurologic deterioration sustained over 30 months. Tafamidis also slowed neurologic impairment in patients previously given placebo, but treatment benefits were greater when tafamidis was begun earlier

    Natural polyprenylated benzophenones: keto-enol tautomerism and stereochemistry

    Full text link
    The keto-enol tautomerism and stereochemistry study of a HIV-inhibitory natural benzophenone, (1R,5R,7R,8S)-(+)-3-(10-(3,4-dihydroxyphenyl)-10-hydroxymethylene)-8-methyl -1,5,7-tris(3-methyl-2-butenyl)-8-(4-methyl-3-pentenyl)-bicyclo[3.3.1]nonane-2,4,9-trione (a), isolated from Garcinia brasiliensis seeds is presented. The crystal structure of (a), which is also know as guttiferona A, was determined by X-ray diffraction and its intra and inter-molecular geometries discussed and compared with two analogue natural benzophenones: clusianone and epiclusianone. In (a), the hydroxyl H atom from enolizable 2,4,10-trione moiety is linked in the oxygen atom bonded to 10-(3,4-dihydroxyphenyl)methylene group, in opposition to the related natural benzophenones, where this analogue H-atom is placed in different O-atoms from bicyclo[3.3.1]nonane ring system. Such behaviour can be explained by the presence of aromatic OH6 group in (a) that origins a further delocalized resonance path along of 3,4-dihydroxyphenyl-C10-OH2 group. In addition, the (a) stereochemistry around C7 atom is compared with known structures of clusianone and epiclusianone and the influence from configuration in this chiral C-atom to structural features found in the enolizable system is proposed

    Inotersen treatment for patients with hereditary transthyretin amyloidosis

    Get PDF
    BACKGROUND: Hereditary transthyretin amyloidosis is caused by pathogenic single-nucleotide variants in the gene encoding transthyretin ( TTR) that induce transthyretin misfolding and systemic deposition of amyloid. Progressive amyloid accumulation leads to multiorgan dysfunction and death. Inotersen, a 2'- O-methoxyethyl-modified antisense oligonucleotide, inhibits hepatic production of transthyretin. METHODS: We conducted an international, randomized, double-blind, placebo-controlled, 15-month, phase 3 trial of inotersen in adults with stage 1 (patient is ambulatory) or stage 2 (patient is ambulatory with assistance) hereditary transthyretin amyloidosis with polyneuropathy. Patients were randomly assigned, in a 2:1 ratio, to receive weekly subcutaneous injections of inotersen (300 mg) or placebo. The primary end points were the change in the modified Neuropathy Impairment Score+7 (mNIS+7; range, -22.3 to 346.3, with higher scores indicating poorer function; minimal clinically meaningful change, 2 points) and the change in the score on the patient-reported Norfolk Quality of Life-Diabetic Neuropathy (QOL-DN) questionnaire (range, -4 to 136, with higher scores indicating poorer quality of life). A decrease in scores indicated improvement. RESULTS: A total of 172 patients (112 in the inotersen group and 60 in the placebo group) received at least one dose of a trial regimen, and 139 (81%) completed the intervention period. Both primary efficacy assessments favored inotersen: the difference in the least-squares mean change from baseline to week 66 between the two groups (inotersen minus placebo) was -19.7 points (95% confidence interval [CI], -26.4 to -13.0; P<0.001) for the mNIS+7 and -11.7 points (95% CI, -18.3 to -5.1; P<0.001) for the Norfolk QOL-DN score. These improvements were independent of disease stage, mutation type, or the presence of cardiomyopathy. There were five deaths in the inotersen group and none in the placebo group. The most frequent serious adverse events in the inotersen group were glomerulonephritis (in 3 patients [3%]) and thrombocytopenia (in 3 patients [3%]), with one death associated with one of the cases of grade 4 thrombocytopenia. Thereafter, all patients received enhanced monitoring. CONCLUSIONS: Inotersen improved the course of neurologic disease and quality of life in patients with hereditary transthyretin amyloidosis. Thrombocytopenia and glomerulonephritis were managed with enhanced monitoring. (Funded by Ionis Pharmaceuticals; NEURO-TTR ClinicalTrials.gov number, NCT01737398 .)

    Why has not it worked? An empirical application of the extended Burns and Scapens' framework within the implementation of a controlling department

    Get PDF
    ABSTRACT The aim of this study is to understand the implementation of a controlling department within Bogt and Scapens' framework (2014) as an empirical observation mechanism towards investigating rationalities that prevented its implementation. This study was conducted in a quite successful 63-year old company in the South of Brazil. We hope these results promote practical insight to those interested in supporting changes within this field of organizational environment. There had been two main reasons leading to such work: a lack of equivalent study in the scholarly literature as well as empirical application of Burns and Scapens' framework (2000) reorganized by Bogt and Scapens (2014). Bogt and Scapens (2014), inspired by different logics (Bogt & Scapens, 2012) and in order to revaluate their original framework (2000), suggest the introduction of a fairly important term: rationality. This new element shows the deliberate action from the organizational player - his/her way of thinking. However, even with the introduction of rationales within the model by Bogt and Scapens (2014), rules and routines remain as important elements so that actions take shape. Used methodology consists of an interpretational case study with document analysis, direct observation, and application of semi-structured interviews. Through the interviews and discussions with individuals involved in the study, it can be observed that some rationality resulted in conflicts. Different rationales and the culture of the individual and the organization are relevant aspects observed in the speeches analyzed; all may be factors, which led to the gap within the process of implementation of controlling department in the organization. In addition, time factors suggested in the extended Bogt and Scapens' (2014) framework is of utmost importance for changes must occur gradually

    Design and Rationale of the Global Phase 3 NEURO-TTRansform Study of Antisense Oligonucleotide AKCEA-TTR-LRx (ION-682884-CS3) in Hereditary Transthyretin-Mediated Amyloid Polyneuropathy

    Get PDF
    Introduction: AKCEA-TTR-LRx is a ligand-conjugated antisense (LICA) drug in development for the treatment of hereditary transthyretin amyloidosis (hATTR), a fatal disease caused by mutations in the transthyretin (TTR) gene. AKCEA-TTR-LRx shares the same nucleotide sequence as inotersen, an antisense medicine approved for use in hATTR polyneuropathy (hATTR-PN). Unlike inotersen, AKCEA-TTR-LRx is conjugated to a triantennary N-acetylgalactosamine moiety that supports receptor-mediated uptake by hepatocytes, the primary source of circulating TTR. This advanced design increases drug potency to allow for lower and less frequent dosing. The NEURO-TTRansform study will investigate whether AKCEA-TTR-LRx is safe and efficacious, with the aim of improving neurologic function and quality of life in hATTR-PN patients. Methods/design: Approximately 140 adults with stage 1 (independent ambulation) or 2 (requires ambulatory support) hATTR-PN are anticipated to enroll in this multicenter, open-label, randomized, phase 3 study. Patients will be assigned 6:1 to AKCEA-TTR-LRx 45 mg subcutaneously every 4 weeks or inotersen 300 mg once weekly until the prespecified week 35 interim efficacy analysis, after which patients receiving inotersen will receive AKCEA-TTR-LRx 45 mg subcutaneously every 4 weeks. All patients will then receive AKCEA-TTR-LRx through the remainder of the study treatment period. The final efficacy analysis at week 66 will compare the AKCEA-TTR-LRx arm with the historical placebo arm from the phase 3 trial of inotersen (NEURO-TTR). The primary outcome measures are between-group differences in the change from baseline in serum TTR, modified Neuropathy Impairment Score + 7, and Norfolk Quality of Life-Diabetic Neuropathy questionnaire. Conclusion: NEURO-TTRansform is designed to determine whether targeted delivery of AKCEA-TTR-LRx to hepatocytes with lower and less frequent doses will translate into clinical and quality-of-life benefits for patients with hATTR-PN

    A Honey Bee Hexamerin, HEX 70a, Is Likely to Play an Intranuclear Role in Developing and Mature Ovarioles and Testioles

    Get PDF
    Insect hexamerins have long been known as storage proteins that are massively synthesized by the larval fat body and secreted into hemolymph. Following the larval-to-pupal molt, hexamerins are sequestered by the fat body via receptor-mediated endocytosis, broken up, and used as amino acid resources for metamorphosis. In the honey bee, the transcript and protein subunit of a hexamerin, HEX 70a, were also detected in ovaries and testes. Aiming to identify the subcellular localization of HEX 70a in the female and male gonads, we used a specific antibody in whole mount preparations of ovaries and testes for analysis by confocal laser-scanning microscopy. Intranuclear HEX 70a foci were evidenced in germ and somatic cells of ovarioles and testioles of pharate-adult workers and drones, suggesting a regulatory or structural role. Following injection of the thymidine analog EdU we observed co-labeling with HEX 70a in ovariole cell nuclei, inferring possible HEX 70a involvement in cell proliferation. Further support to this hypothesis came from an injection of anti-HEX 70a into newly ecdysed queen pupae where it had a negative effect on ovariole thickening. HEX 70a foci were also detected in ovarioles of egg laying queens, particularly in the nuclei of the highly polyploid nurse cells and in proliferating follicle cells. Additional roles for this storage protein are indicated by the detection of nuclear HEX 70a foci in post-meiotic spermatids and spermatozoa. Taken together, these results imply undescribed roles for HEX 70a in the developing gonads of the honey bee and raise the possibility that other hexamerins may also have tissue specific functions
    corecore