6,328 research outputs found
Microscopic Enhancement of Heavy-Element Production
Realistic fusion barriers are calculated in a macroscopic-microscopic model
for several soft-fusion heavy-ion reactions leading to heavy and superheavy
elements. The results obtained in such a realistic picture are very different
from those obtained in a purely macroscopic model. For reactions on 208:Pb
targets, shell effects in the entrance channel result in fusion-barrier
energies at the touching point that are only a few MeV higher than the ground
state for compound systems near Z = 110. The entrance-channel fragment-shell
effects remain far inside the touching point, almost to configurations only
slightly more elongated than the ground-state configuration, where the fusion
barrier has risen to about 10 MeV above the ground-state energy. Calculated
single-particle level diagrams show that few level crossings occur until the
peak in the fusion barrier very close to the ground-state shape is reached,
which indicates that dissipation is negligible until very late in the fusion
process. Whereas the fission valley in a macroscopic picture is several tens of
MeV lower in energy than is the fusion valley, we find in the
macroscopic-microscopic picture that the fission valley is only about 5 MeV
lower than the fusion valley for soft-fusion reactions leading to compound
systems near Z = 110. These results show that no significant
``extra-extra-push'' energy is needed to bring the system inside the fission
saddle point and that the typical reaction energies for maximum cross section
in heavy-element synthesis correspond to only a few MeV above the maximum in
the fusion barrier.Comment: 7 pages. LaTeX. Submitted to Zeitschrift fur Physik A. 5 figures not
included here. Complete preprint, including device-independent (dvi),
PostScript, and LaTeX versions of the text, plus PostScript files of the
figures, available at http://t2.lanl.gov/publications/publications.html or at
ftp://t2.lanl.gov/pub/publications/mehe
The role of the lattice structure in determining the magnon-mediated interactions between charge carriers doped into a magnetically ordered background
We use two recently proposed methods to calculate exactly the spectrum of two
spin- charge carriers moving in a ferromagnetic background, at zero
temperature, for three types of models. By comparing the low-energy states in
both the one-carrier and the two-carrier sectors, we analyze whether complex
models with multiple sublattices can be accurately described by simpler
Hamiltonians, such as one-band models. We find that while this is possible in
the one-particle sector, the magnon-mediated interactions which are key to
properly describe the two-carrier states of the complex model are not
reproduced by the simpler models. We argue that this is true not just for
ferromagnetic, but also for antiferromagnetic backgrounds. Our results question
the ability of simple one-band models to accurately describe the low-energy
physics of cuprate layers.Comment: 15 pages, 10 figure
Fission-fragment mass distributions from strongly damped shape evolution
Random walks on five-dimensional potential-energy surfaces were recently
found to yield fission-fragment mass distributions that are in remarkable
agreement with experimental data. Within the framework of the Smoluchowski
equation of motion, which is appropriate for highly dissipative evolutions, we
discuss the physical justification for that treatment and investigate the
sensitivity of the resulting mass yields to a variety of model ingredients,
including in particular the dimensionality and discretization of the shape
space and the structure of the dissipation tensor. The mass yields are found to
be relatively robust, suggesting that the simple random walk presents a useful
calculational tool. Quantitatively refined results can be obtained by including
physically plausible forms of the dissipation, which amounts to simulating the
Brownian shape motion in an anisotropic medium.Comment: 14 pages, 11 ps figure
Constraining the CDM and Galileon models with recent cosmological data
The Galileon theory belongs to the class of modified gravity models that can
explain the late-time accelerated expansion of the Universe. In previous works,
cosmological constraints on the Galileon model were derived, both in the
uncoupled case and with a disformal coupling of the Galileon field to matter.
There, we showed that these models agree with the most recent cosmological
data. In this work, we used updated cosmological data sets to derive new
constraints on Galileon models, including the case of a constant conformal
Galileon coupling to matter. We also explored the tracker solution of the
uncoupled Galileon model. After updating our data sets, especially with the
latest \textit{Planck} data and BAO measurements, we fitted the cosmological
parameters of the CDM and Galileon models. The same analysis framework
as in our previous papers was used to derive cosmological constraints, using
precise measurements of cosmological distances and of the cosmic structure
growth rate. We showed that all tested Galileon models are as compatible with
cosmological data as the CDM model. This means that present
cosmological data are not accurate enough to distinguish clearly between both
theories. Among the different Galileon models, we found that a conformal
coupling is not favoured, contrary to the disformal coupling which is preferred
at the level over the uncoupled case. The tracker solution of the
uncoupled Galileon model is also highly disfavoured due to large tensions with
supernovae and \textit{Planck}+BAO data. However, outside of the tracker
solution, the general uncoupled Galileon model, as well as the general
disformally coupled Galileon model, remain the most promising Galileon
scenarios to confront with future cosmological data. Finally, we also discuss
constraints coming from Lunar Laser Ranging experiment and gravitational wave
speed of propagation.Comment: 22 pages, 17 figures, published version in A&
First experimental constraints on the disformally coupled Galileon model
The Galileon model is a modified gravity model that can explain the late-time
accelerated expansion of the Universe. In a previous work, we derived
experimental constraints on the Galileon model with no explicit coupling to
matter and showed that this model agrees with the most recent cosmological
data. In the context of braneworld constructions or massive gravity, the
Galileon model exhibits a disformal coupling to matter, which we study in this
paper. After comparing our constraints on the uncoupled model with recent
studies, we extend the analysis framework to the disformally coupled Galileon
model and derive the first experimental constraints on that coupling, using
precise measurements of cosmological distances and the growth rate of cosmic
structures. In the uncoupled case, with updated data, we still observe a low
tension between the constraints set by growth data and those from distances. In
the disformally coupled Galileon model, we obtain better agreement with data
and favour a non-zero disformal coupling to matter at the level.
This gives an interesting hint of the possible braneworld origin of Galileon
theory.Comment: 9 pages, 6 figures, updated versio
An O(M(n) log n) algorithm for the Jacobi symbol
The best known algorithm to compute the Jacobi symbol of two n-bit integers
runs in time O(M(n) log n), using Sch\"onhage's fast continued fraction
algorithm combined with an identity due to Gauss. We give a different O(M(n)
log n) algorithm based on the binary recursive gcd algorithm of Stehl\'e and
Zimmermann. Our implementation - which to our knowledge is the first to run in
time O(M(n) log n) - is faster than GMP's quadratic implementation for inputs
larger than about 10000 decimal digits.Comment: Submitted to ANTS IX (Nancy, July 2010
Sustainability performance measurement : a preliminary classification framework of models and indicators
In this position paper we focus on the diversity of sustainability measurements. Based on existing research on performance measurement, we propose a preliminary classification framework summarizing sustainability models and indicators. By describing illustrative examples, we claim that several models and indicators can be distinguished with their own peculiarities. Having such a framework is interesting for both academia and business to structure the range of models and indicators and to ultimately select the appropriate sustainability measurement approach. The proposed framework should be validated by further research
- …