2 research outputs found

    Connectivity Among Populations of the Top Shell Gibbula divaricata in the Adriatic Sea

    Get PDF
    Genetic connectivity studies are essential to understand species diversity and genetic structure and to assess the role of potential factors affecting connectivity, thus enabling sound management and conservation strategies. Here, we analyzed the patterns of genetic variability in the marine snail Gibbula divaricata from five coastal locations in the central-south Adriatic Sea (central Mediterranean) and one in the adjacent northern Ionian Sea, using 21 described polymorphic microsatellite loci. Observed and expected heterozygosity varied from 0.582 to 0.635 and 0.684 to 0.780, respectively. AMOVA analyses showed that 97% of genetic variation was observed within populations. Nevertheless, significant, although small, genetic differentiation was found among nearly all of the pairwise FST comparisons. Over a general pattern of panmixia, three groups of populations were identified: eastern Adriatic populations, western Adriatic populations, and a third group represented by the single northern Ionian Sea population. Nonetheless, migration and gene flow were significant between these groups. Gibbula divaricata is thought to have a limited dispersal capacity related to its lecithotrophic trochophore larval stage. Our results indicated high levels of self-recruitment and gene flow that is mainly driven through coastline dispersion, with populations separated by the lack of suitable habitats or deep waters. This stepping-stone mode of dispersion together with the high levels of self-recruitment could lead to higher levels of population structuring and differentiation along the Adriatic Sea. Large effective population sizes and episodic events of long-distance dispersal might be responsible for the weak differentiation observed in the analyzed populations. In summary, the circulation system operating in this region creates natural barriers for dispersion that, together with life-history traits and habitat requirements, certainly affect connectivity in G. divaricata. However, this scenario of potential differentiation seems to be overridden by sporadic events of long-distance dispersal across barriers and large effective population sizes

    Editorial. A supplement of Scires-it on the COCONET european project

    Get PDF
    The Supplement to vol. 6, 2016 of SCIRES-IT contains the result of CoCoNet (Towards COast to COast NETworks of marine protected areas, coupled with sea-based wind energy potential), a project of the EU Oceans of Tomorrow programme (http://www.coconet-fp7.eu). The European Union requires Open Access to the results of the projects resulting from its support to scientific advancement. This is in full accordance with the policy of SCIRES-IT, an eco-sustainable open–access journal, which joins the main principles of the Berlin Declaration on Open Access with the aims of the International Convention on Biological Diversity. CoCoNet tackled two problems that are closely linked with each other: the protection of the marine environment and clean energy production. Hence, the Supplement is divided into two parts that, together, form a unicum
    corecore