1,805 research outputs found

    Spin physics with antiprotons

    Full text link
    New possibilities arising from the availability at GSI of antiproton beams, possibly polarised, are discussed. The investigation of the nucleon structure can be boosted by accessing in Drell-Yan processes experimental asymmetries related to cross-sections in which the parton distribution functions (PDF) only appear, without any contribution from fragmentation functions; such processes are not affected by the chiral suppression of the transversity function h1(x)h_1(x). Spin asymmetries in hyperon production and Single Spin Asymmetries are discussed as well, together with further items like electric and magnetic nucleonic form factors and open charm production. Counting rates estimations are provided for each physical case. The sketch of a possible experimental apparatus is proposed.Comment: Presented for the proceedings of ASI "Spin and Symmetry", Prague, July 5-10, 2004, to be published in Czech. J. Phys. 55 (2005

    An analytical program for fermion pair production in e+e- annihilation

    Get PDF
    We describe how to use {\tt ZFITTER}, a program based on a semi-analytical approach to fermion pair production in e^+ e^- annihilation and Bhabha scattering. A flexible treatment of complete {\cal O}(\alpha) QED corrections, also including higher orders, allows for three calculational {\bf chains} with different realistic sets of restrictions in the photon phase space. {\tt ZFITTER} consists of several {\bf branches} with varying assumptions on the underlying hard scattering process. One includes complete {\cal O}(\alpha) weak loop corrections with a resummation of leading higher-order terms. Alternatively, an ansatz inspired from S-matrix theory, or several model-independent effective Born cross sections may be convoluted. The program calculates cross sections, forward-backward asymmetries, and for \tau~pair production also the final-state polarization. Various {\bf interfaces} allow fits to be performed with different sets of free parameters

    Impact of heliogeophysical disturbances on ionospheric HF channels

    Get PDF
    © 2017 COSPAR. The article presents the results of the observation of a strong magnetic storm and two X-ray flares during the summer solstice in 2015, and their impact on the HF signals characteristics in ionospheric oblique sounding. It was found that the negative phase of the magnetic storm led to a strong degradation of the ionospheric channel, ultimately causing a long blackout on paths adjacent to subauroral latitudes. On mid-latitude paths, the decrease in 1FMOF reached ∼50% relative to the average values for the quiet ionosphere. It is shown that the propagation conditions via the sporadic Es layer during the magnetic storm on a subauroral path are substantially better than those for F-mode propagation via the upper ionosphere. The delay of the sharp decrease in 1FMOF during the main phase of the magnetic storm allowed us to determine the propagation velocity of the negative phase disturbances (∼100. m/s) from subauroral to mid-latitude ionosphere along two paths: Lovozero - Yoshkar-Ola and Cyprus - Nizhny Novgorod. It is shown that both the LOF and the signal/noise ratio averaged over the frequency band corresponding to the propagation mode via the sporadic Es layer correlate well with the auroral AE index. Using an over-the-horizon chirp radar with a bistatic configuration on the Cyprus - Rostov-on-Don path, we located small-scale scattering irregularities responsible for abnormal signals in the region of the equatorial boundary of the auroral oval

    Impact of a Strong Magnetic Storm and Two X-Ray Flares on the Ionospheric HF Channel in the Summer Solstice of 2015 According to Oblique Sounding in the Eurasian Region

    Get PDF
    © 2017, Springer Science+Business Media, LLC. We present the results of observations of the impact a strong magnetic storm and two X-ray flares in the summer solstice of 2015 on the HF signal characteristics during oblique sounding of the ionosphere in the Eurasian region. It was found that the negative phase of the magnetic storm led to a strong degradation of the ionospheric channel, up to a long blackout on the paths adjacent to the subauroral latitudes. On the midlatitude paths, a decrease in the maximum observable frequency of the F layer reached 50% with respect to the average values for an undisturbed ionosphere. The propagation velocity of the negative phase of a disturbance from the subauroral to the midlatitude ionosphere is determined (it is equal to about 100 m/s). It is shown that during a magnetic storm the least observable frequency and the average signal-to-noise ratio for the propagation mode via the sporadic E s layer correlate well with the auroral AE index. Anomalous signals were detected in the main phase of the magnetic storm on the Cyprus—Rostov-on-Don path when a chirp ionosonde–radio direction finder was operated in the over-the-horizon HF radar mode. On the basis of modeling and comparison with experimental data, it is shown that the anomalous signals are due to scattering of radio waves by small-scale irregularities located in the subauroral ionospheric F region

    Impact of a Strong Magnetic Storm and Two X-Ray Flares on the Ionospheric HF Channel in the Summer Solstice of 2015 According to Oblique Sounding in the Eurasian Region

    Get PDF
    © 2017 Springer Science+Business Media, LLC We present the results of observations of the impact a strong magnetic storm and two X-ray flares in the summer solstice of 2015 on the HF signal characteristics during oblique sounding of the ionosphere in the Eurasian region. It was found that the negative phase of the magnetic storm led to a strong degradation of the ionospheric channel, up to a long blackout on the paths adjacent to the subauroral latitudes. On the midlatitude paths, a decrease in the maximum observable frequency of the F layer reached 50% with respect to the average values for an undisturbed ionosphere. The propagation velocity of the negative phase of a disturbance from the subauroral to the midlatitude ionosphere is determined (it is equal to about 100 m/s). It is shown that during a magnetic storm the least observable frequency and the average signal-to-noise ratio for the propagation mode via the sporadic E s layer correlate well with the auroral AE index. Anomalous signals were detected in the main phase of the magnetic storm on the Cyprus—Rostov-on-Don path when a chirp ionosonde–radio direction finder was operated in the over-the-horizon HF radar mode. On the basis of modeling and comparison with experimental data, it is shown that the anomalous signals are due to scattering of radio waves by small-scale irregularities located in the subauroral ionospheric F region

    Measurement of the t-channel single top quark production cross section

    Get PDF
    The D0 collaboration reports direct evidence for electroweak production of single top quarks through the t-channel exchange of a virtual W boson. This is the first analysis to isolate an individual single top quark production channel. We select events containing an isolated electron or muon, missing transverse energy, and two, three or four jets from 2.3 fb^-1 of ppbar collisions at the Fermilab Tevatron Collider. One or two of the jets are identified as containing a b hadron. We combine three multivariate techniques optimized for the t-channel process to measure the t- and s-channel cross sections simultaneously. We measure cross sections of 3.14 +0.94 -0.80 pb for the t-channel and 1.05 +-0.81 pb for the s-channel. The measured t-channel result is found to have a significance of 4.8 standard deviations and is consistent with the standard model prediction.Comment: 7 pages, 6 figure

    Simultaneous measurement of the ratio B(t->Wb)/B(t->Wq) and the top quark pair production cross section with the D0 detector at sqrt(s)=1.96 TeV

    Get PDF
    We present the first simultaneous measurement of the ratio of branching fractions, R=B(t->Wb)/B(t->Wq), with q being a d, s, or b quark, and the top quark pair production cross section sigma_ttbar in the lepton plus jets channel using 0.9 fb-1 of ppbar collision data at sqrt(s)=1.96 TeV collected with the D0 detector. We extract R and sigma_ttbar by analyzing samples of events with 0, 1 and >= 2 identified b jets. We measure R = 0.97 +0.09-0.08 (stat+syst) and sigma_ttbar = 8.18 +0.90-0.84 (stat+syst)} +/-0.50 (lumi) pb, in agreement with the standard model prediction.Comment: submitted to Phys.Rev.Letter

    Search for new fermions ("quirks") at the Fermilab Tevatron Collider

    Get PDF
    We report results of a search for particles with anomalously high ionization in events with a high transverse energy jet and large missing transverse energy in 2.42.4 fb1^{-1} of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron ppˉp\bar{p} collider. Production of such particles (quirks) is expected in scenarios with extra QCD-like {\it SU(N)} sectors, and this study is the first dedicated search for such signatures. We find no evidence of a signal and set a lower mass limit of 107 ~GeV for the mass of a charged quirk with strong dynamics scale Λ\Lambda in the range from 10 keV to 1 MeV.Comment: submitted to Phys. Rev. Letter
    corecore