27 research outputs found

    Research on wear prediction of piston/cylinder pair in axial piston pumps

    Get PDF
    The piston/cylinder pair is the critical lubricating interface of axial piston pumps. It suffers from excessive wear, especially under high output pressure. The performance degradation of the piston/cylinder pair is significant to be clarified. In this paper, a wear prediction method of the piston/cylinder pair is established by coupling the load-bearing and lubrication parameters calculation model and the wear calculation model. The models are validated through experiments. The experimental and simulated results show that the wear of two ends of the cylinder bore is severe in the specific ranges of circumferential angle. The time-varying wear process of the piston/cylinder pair can be obtained by using this method; therefore, the maintenance time can be predicted

    The global landscape of approved antibody therapies

    Get PDF
    Antibody therapies have become an important class of therapeutics in recent years as they have exhibited outstanding efficacy and safety in the treatment of several major diseases including cancers, immune-related diseases, infectious disease and hematological disease. There has been significant progress in the global research and development landscape of antibody therapies in the past decade. In this review, we have collected available data from the Umabs Antibody Therapies Database (Umabs-DB, https://umabs.com) as of 30 June 2022. The Umabs-DB shows that 162 antibody therapies have been approved by at least one regulatory agency in the world, including 122 approvals in the US, followed by 114 in Europe, 82 in Japan and 73 in China, whereas biosimilar, diagnostic and veterinary antibodies are not included in our statistics. Although the US and Europe have been at the leading position for decades, rapid advancement has been witnessed in Japan and China in the past decade. The approved antibody therapies include 115 canonical antibodies, 14 antibody-drug conjugates, 7 bispecific antibodies, 8 antibody fragments, 3 radiolabeled antibodies, 1 antibody-conjugate immunotoxin, 2 immunoconjugates and 12 Fc-Fusion proteins. They have been developed against 91 drug targets, of which PD-1 is the most popular, with 14 approved antibody-based blockades for cancer treatment in the world. This review outlined the global landscape of the approved antibody therapies with respect to the regulation agencies, therapeutic targets and indications, aiming to provide an insight into the trends of the global development of antibody therapies

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Regulatory Effect of Exogenous γ-Aminobutyric Acid on Respiratory Rate through the γ-Aminobutyric Acid Shunt in <i>Malus baccata</i> (L.) Borkh. Roots under Suboptimal Low Root-Zone Temperature

    No full text
    Malus baccata (L.) Borkh. is one of the most widely used rootstocks in the apple-producing region of Northern China. However, in the early growing season, apple roots are often subjected to suboptimal low root-zone temperatures. The regulatory effects of exogenous γ-aminobutyric acid (GABA) on both the γ-aminobutyric acid shunt (GABA shunt) and the respiratory activity of roots under suboptimal low root-zone temperatures remain unknown. To explore the physiological basis for GABA alleviation of low-temperature stress in M. baccata Borkh. roots, the following treatments were examined: suboptimal low root-zone temperature (potted parts of the seedlings were maintained at 5 ± 0.5 °C; L); suboptimal low root-zone temperature + GABA (LG); and suboptimal low root-zone temperature + vigabatrin (VGB; LV), which is a specific active inhibitor of γ-aminobutyric acid transaminase (GABA-T). Each treatment was matched with a control (18 °C/8 °C day/night; CK) for comparison. Our results showed that the L treatment reduced the root vitality, increased malondialdehyde (MDA) content, promoted the accumulation of GABA, activated the GABA shunt, and inhibited the total root respiration rate (VTotal) by decreasing the respiratory rates of Embden–Meyerhof pathway (VEMP) and tricarboxylic acid cycle (VTCAC). The LG treatment significantly increased the content of endogenous GABA, accelerated the metabolism of the GABA shunt, enhanced root respiratory activity by increasing VTotal, VEMP, VTCAC, and increased the cytochrome pathway respiratory rate (VCP), thus alleviating the damage of low root-zone temperature stress. Meanwhile, contrasting results were observed in the LV treatment. These findings revealed that exogenous GABA improved the tolerance of apple rootstocks to suboptimal low temperatures in early spring by regulating the GABA shunt and root respiratory activity

    Active Pressure Ripple Reduction of a Self-Supplied Variable Displacement Pump with Notch Least Mean Square Filter

    No full text
    As the power sources in hydraulic systems, variable displacement axial piston pumps generate flow fluctuation. Unfortunately, it results in pressure pulsation which excites the system vibration and emitted noise. The majority of studies try to eliminate the pulsation via a passive technique and the active control methodology has not been discussed in detail. In this research, the feasibility of reducing the pressure ripple by properly controlling the proportional valve has been investigated, which also supports the miniaturization of the active control system. A mathematical model of the self-supplied variable displacement pump including the control system has been developed. The filtered-X least mean square algorithm with time-delay compensation is utilized to calculate the active control signal. Simulation results show the effectiveness of the active control technique. The effect of the active control signal on the flow rate from different chambers of the pump has been analyzed. It demonstrates that the variation of the pressure pulsation should be ascribed to the comprehensive reaction of different flow rates. The major reason is that the flow of the actuator piston neutralizes the peak value of the flow ripple, generated by the nine pistons

    Blue Light Regulates Cell Wall Structure and Carbohydrate Metabolism of Soybean Hypocotyl

    No full text
    Soybean stem elongation and thickening are related to cell wall composition. Plant morphogenesis can be influenced by blue light, which can regulate cell wall structure and composition, and affect stem growth and development. Here, using proteomics and metabolomics, differentially expressed proteins and metabolites of hypocotyls grown in the dark and under blue light were studied to clarify the effects of blue light on the cell wall structure and carbohydrate metabolism pathway of soybean hypocotyls. Results showed that 1120 differential proteins were upregulated and 797 differential proteins were downregulated under blue light treatment, while 63 differential metabolites were upregulated and 36 differential metabolites were downregulated. Blue light promoted the establishment of cell wall structure and composition by regulating the expression of both the enzymes and metabolites related to cell wall structural composition and nonstructural carbohydrates. Thus, under blue light, the cross-sectional area of the hypocotyl and xylem were larger, the longitudinal length of pith cells was smaller, elongation of the soybean hypocotyl was inhibited, and diameter was increased

    Assimilation of Nitrate into Asparagine for Transport in Soybeans

    No full text
    In this study, the systematic analysis of nitrate assimilation and transport in soybean roots was further improved by analyzing the concentrations of nitrate assimilates, asparagine and glutamine, in soybean roots and the related enzyme activities. This provided a theoretical basis for the efficient utilization of nitrogen fertilizer in soybean farming. A dual-root soybean system with both sides being nodulated was used to provide nitrate withdrawal and resupply in three phases on one side, while the other side received nutrients without nitrogen under sand culture conditions. Measurements were taken of the root’s nitrate reductase and glutamine synthetase activities, as well as the concentrations of asparagine. Measurements were also taken of the asparagine concentration in the basal root peeled skin (where the primary transport pathway is the phloem) and the woody parts (where the primary transport pathway is the xylem). Furthermore, the concentration of glutamine in the roots was also assessed. The findings indicated a positive correlation between the nitrate concentration in the roots and the activity of glutamine synthetase in the roots on both sides. The levels of asparagine in the roots, specifically those in the basal root peeled skin and woody part on both sides, rose when nitrate was added and declined when nitrate was removed. There was no significant change in glutamine concentration within the roots of soybeans. Hence, we deduced that the local provision of nitrate to the dual-root soybeans might enhance the absorption of nitrate into the roots on both sides. Additionally, the assimilated substances were predominantly carried as asparagine through the peeled skin and woody sections of the basal root, facilitating transportation in both directions within the soybean plants (from shoot to root and from root to shoot)

    Assessing the Systematic Effects of the Concentration of Nitrogen Supplied to Dual-Root Systems of Soybean Plants on Nodulation and Nitrogen Fixation

    No full text
    The specific mechanisms by which nitrogen affects the nodulation and nitrogen fixation of soybean plants are unclear. Investigating the relationship between nitrogen, nodulation and nitrogen fixation can provide new insights for the rational and proper use of nitrogen fertilizer in soybean plants. In this study, we grafted soybean roots to construct a dual-root system with a single nodulated side. Experiment I was performed at the third trifoliate leaf to initial seed filling (V3-R3) growth stages (for 30 days) for long-term nitrogen supply, and Experiment II was performed at the third trifoliate leaf to fourth trifoliate leaf (V3-V4) growth stages (for 5 days) for short-term nitrogen supply. For the two experiments, a nutrient solution providing 15NH415NO3 or NH4NO3 as the nitrogen source was added to the non-nodulated side, while a nitrogen-free nutrient solution was added to the nodulated side. The concentrations of nitrogen supplied were 0 mg/L, 25 mg/L, 50 mg/L, 75 mg/L, and 100 mg/L. The results showed the following: (1) Short-term nitrogen supply systematically regulated the specific nitrogenase activity (SNA), thereby inhibiting the acetylene reduction activity (ARA). Under long-term nitrogen supply, the recovery of SNA was generally consistent across treatments, and the concentration of nitrogen supplied systematically regulated the growth of root nodules, thereby inhibiting the ARA. (2) Using the 15N tracer method, the concentration of fertilizer nitrogen was positively correlated with the amount of nitrogen redistributed to other organs. Although the percentage of nitrogen derived from the atmosphere (Ndfa%) decreased significantly with increasing concentrations of nitrogen supplied, the effect on the accumulation of nitrogen fixed by nodules (Naccumulation of nodules) was not significant. By establishing the relationships between the ARA (measured by the acetylene reduction method), Ndfa% (based on 15N calculations), and Naccumulation nodules (based on 15N calculations), it was found that the ARA reliably reflected the Ndfa% but not the Naccumulation of nodules

    Accumulation and Distribution of Fertilizer Nitrogen and Nodule-Fixed Nitrogen in Soybeans with Dual Root Systems

    No full text
    The soybean (Glycine max L. Merr.) is a crop with a high demand for nitrogen (N). The root nodules that form in soybeans can fix atmospheric N effectively, yet the goal of achieving high yields cannot be met by relying solely on nodule-fixed N. Nonetheless, the application of N fertilizer may inhibit nodule formation and biological N fixation (BNF), but the underpinning mechanisms are still unclear. In this study, we grafted the roots of non-nodulated soybeans onto nodulated soybeans to generate plants with dual root system. The experiment included three treatments conducted under sand culture conditions with NO 3 &minus; and NH 4 + as N sources. Treatment I: The non-nodulated roots on one side received 50 mg&middot;L&minus;1 15 NO 3 &minus; or 15NH4+, and the nodulated roots on the other side were not treated. Treatment II: The non-nodulated roots received 50 mg&middot;L&minus;1 15 NO 3 &minus; or 15 NH 4 + , and the nodulated roots received 50 mg&middot;L&minus;1 14 NO 3 &minus; or 14 NH 4 + . Treatment III: Both non-nodulated and nodulated roots received 50 mg&middot;L&minus;1 15 NO 3 &minus; or 15 NH 4 + . The results showed the following: (1) Up to 81.5%&ndash;87.1% of the N absorbed by the soybean roots and fixed by the root nodules was allocated to shoot growth, leaving 12.9%&ndash;18.5% for root and nodule growth. Soybeans preferentially used fertilizer N in the presence of a NO 3 &minus; or NH 4 + supply. After the absorbed fertilizer N and nodule-fixed N was transported to the shoots, a portion of it was redistributed to the roots and nodules. The N required for root growth was primarily derived from the NO 3 &minus; or NH 4 + assimilated by the roots and the N fixed by the nodules, with a small portion translocated from the shoots. The N required for nodule growth was primarily contributed by nodule-fixed N with a small portion translocated from the shoots, whereas the NO 3 &minus; or NH 4 + that was assimilated by the roots was not directly supplied to the nodules. (2) Based on observations of the shoots and one side of the roots and nodules in the dual root system as an N translocation system, we proposed a method for calculating the N translocation from soybean shoots to roots and nodules during the R1&ndash;R5 stages based on the difference in the 15N abundance. Our calculations showed that when adding N at a concentration of 50 mg&middot;L&minus;1, the N translocated from the shoots during the R1&ndash;R5 stages accounts for 29.6%&ndash;52.3% of the N accumulation in nodulated roots (Rootn) and 9.4%&ndash;16.6% of the N accumulation in Nodulen of soybeans. Through the study of this experiment, the absorption, distribution and redistribution characteristics of fertilizer N and root nodule N fixation in soybean can be clarified, providing a theoretical reference for analyzing the mechanisms of the interaction between fertilizer N and nodule-fixed N

    Study on the Regulatory Effects of GA3 on Soybean Internode Elongation

    No full text
    Excessive plant height is an important factor that can lead to lodging, which is closely related to soybean yield. Gibberellins are widely used as plant growth regulators in agricultural production. Gibberellic acid (GA3), one of the most effective active gibberellins, has been used to regulate plant height and increase yields. The mechanism through which GA3 regulates internode elongation has been extensively investigated. In 2019 and 2020, we applied GA3 to the stems, leaves, and roots of two soybean cultivars, Heinong 48 (a high-stalk cultivar) and Henong 60 (a dwarf cultivar), and GA3 was also applied to plants whose apical meristem was removed or to girded plants to compare the internode length and stem GA3 content of soybean plants under different treatments. These results suggested that the application of GA3 to the stems, leaves, and roots of soybean increased the internode length and GA3 content in the stems. Application of GA3 decreased the proportion of the pith in the soybean stems and primary xylem while increasing the proportion of secondary xylem. The apical meristem is an important site of GA3 synthesis in soybean stems and is involved in the regulation of stem elongation. GA3 was shown to be transported acropetally through the xylem and laterally between the xylem and phloem in soybean stems. We conclude that the GA3 level in stems is an important factor affecting internode elongation
    corecore