167 research outputs found

    Experimental Analysis of Sources of Error in Evolutionary Studies Based on Roche/454 Pyrosequencing of Viral Genomes

    Get PDF
    Factors affecting the reliability of Roche/454 pyrosequencing for analyzing sequence polymorphism in within-host viral populations were assessed by two experiments: 1) sequencing four clonal simian immunodeficiency virus (SIV) stocks and 2) sequencing mixtures in different proportions of two SIV strains with known fixed nucleotide differences. Observed nucleotide diversity and frequency of undetermined nucleotides were increased at sites in homopolymer runs of four or more identical nucleotides, particularly at AT sites. However, in the mixed-strain experiments, the effects on estimated nucleotide diversity of such errors were small in comparison to known strain differences. The results suggest that biologically meaningful variants present at a frequency of around 10% and possibly much lower are easily distinguished from artifacts of the sequencing process. Analysis of the clonal stocks revealed numerous rare variants that showed the signature of purifying selection and that elimination of variants at frequencies of less than 1% reduced estimates of nucleotide diversity by about an order of magnitude. Thus, using a 1% frequency cutoff for accepting a variant as real represents a conservative standard, which may be useful in studies that are focused on the discovery of specific mutations (such as those conferring immune escape or drug resistance). On the other hand, if the goal is to estimate nucleotide diversity, an optimal strategy might be to include all observed variants (even those at less than 1% frequency), while masking out homopolymer runs of four or more nucleotides

    Determining utility values in patients with anterior cruciate ligament tears using clinical scoring systems

    Get PDF
    BACKGROUND: Several instruments and clinical scoring systems have been established to evaluate patients with ligamentous knee injuries. A comparison of individual articles in the literature is challenging, not only because of heterogeneity in methodology, but also due to the variety of the scoring systems used to document clinical outcomes. There is limited information about the correlation between used scores and quality of life with no information being available on the impact of each score on the utility values. The aim of this study was to compare the most commonly used scores for evaluating patients with anterior cruciate ligament (ACL) injuries, and to establish corresponding utility values. These values will be used for the interpretation and comparison of outcome results in the currently available literature for different treatment options. METHODS: Four hypothetical vignettes were defined, based on different levels of activities after rupture of the ACL to simulate typical situations seen in daily practice. A questionnaire, including the Health Utility Index (HUI) for utility values, the IKDC subjective score, the Lysholm and the Tegner score, was created and 25 orthopedic surgeons were asked to fill the questionnaire for each hypothetical patient as proxies for all patients they had treated and who would fit in that hypothetical vignette. RESULTS: The utility value as an indicator for quality of life increased with the level of activity. Having discomforts already during normal activities of daily living was rated with a mean utility value of 0.37 ± 0.19, half of that of a situation where mild sport activity was possible without discomfort (0.78 ± 0.11). All investigated scores were able to distinguish clearly (p < 0.05) between the hypothetical vignettes. However, the utility values correlated best with the IKDC subjective score (r = 0.86, p < 0.001) followed by the Lysholm score (r = 0.77, p < 0.001) and the Tegner score (r = 0.77, p < 0.001). CONCLUSIONS: Here we report the correlation between the most commonly used scores for the assessment of patients with a ruptured ACL and utility values as an indicator of quality of life. Assumptions were based on expert opinions to provide a possible transformation algorithm. The IKDC subjective knee score showed the highest correlation to the quality of life (i.e. HUI) in patients with a ruptured ACL. Confirmation of our results is needed by systematic inclusion of a measurement instrument for utility values in future clinical studies beside the already used clinical knee scoring systems

    Two independent proteomic approaches provide a comprehensive analysis of the synovial fluid proteome response to Autologous Chondrocyte Implantation

    Get PDF
    Background: Autologous chondrocyte implantation (ACI) has a failure rate of approximately 20%, but it is yet to be fully understood why. Biomarkers are needed that can pre-operatively predict in which patients it is likely to fail, so that alternative or individualised therapies can be offered. We previously used label-free quantitation (LF) with a dynamic range compression proteomic approach to assess the synovial fluid (SF) of ACI responders and non-responders. However, we were able to identify only a few differentially abundant proteins at baseline. In the present study, we built upon these previous findings by assessing higher-abundance proteins within this SF, providing a more global proteomic analysis on the basis of which more of the biology underlying ACI success or failure can be understood. Methods: Isobaric tagging for relative and absolute quantitation (iTRAQ) proteomic analysis was used to assess SF from ACI responders (mean Lysholm improvement of 33; n = 14) and non-responders (mean Lysholm decrease of 14; n = 13) at the two stages of surgery (cartilage harvest and chondrocyte implantation). Differentially abundant proteins in iTRAQ and combined iTRAQ and LF datasets were investigated using pathway and network analyses. Results: iTRAQ proteomic analysis confirmed our previous finding that there is a marked proteomic shift in response to cartilage harvest (70 and 54 proteins demonstrating ≥ 2.0-fold change and p < 0.05 between stages I and II in responders and non-responders, respectively). Further, it highlighted 28 proteins that were differentially abundant between responders and non-responders to ACI, which were not found in the LF study, 16 of which were altered at baseline. The differential expression of two proteins (complement C1s subcomponent and matrix metalloproteinase 3) was confirmed biochemically. Combination of the iTRAQ and LF proteomic datasets generated in-depth SF proteome information that was used to generate interactome networks representing ACI success or failure. Functional pathways that are dysregulated in ACI non-responders were identified, including acute-phase response signalling. Conclusions: Several candidate biomarkers for baseline prediction of ACI outcome were identified. A holistic overview of the SF proteome in responders and non-responders to ACI  has been profiled, providing a better understanding of the biological pathways underlying clinical outcome, particularly the differential response to cartilage harvest in non-responders

    Lower limb biomechanics during running in individuals with Achilles tendinopathy: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Abnormal lower limb biomechanics is speculated to be a risk factor for Achilles tendinopathy. This study systematically reviewed the existing literature to identify, critique and summarise lower limb biomechanical factors associated with Achilles tendinopathy.</p> <p>Methods</p> <p>We searched electronic bibliographic databases (Medline, EMBASE, Current contents, CINAHL and SPORTDiscus) in November 2010. All prospective cohort and case-control studies that evaluated biomechanical factors (temporospatial parameters, lower limb kinematics, dynamic plantar pressures, kinetics [ground reaction forces and joint moments] and muscle activity) associated with mid-portion Achilles tendinopathy were included. Quality of included studies was evaluated using the Quality Index. The magnitude of differences (effect sizes) between cases and controls was calculated using Cohen's d (with 95% CIs).</p> <p>Results</p> <p>Nine studies were identified; two were prospective and the remaining seven case-control study designs. The quality of 9 identified studies was varied, with Quality Index scores ranging from 4 to 15 out of 17. All studies analysed running biomechanics. Cases displayed increased eversion range of motion of the rearfoot (d = 0.92 and 0.67 in two studies), reduced maximum lower leg abduction (d = -1.16), reduced ankle joint dorsiflexion velocity (d = -0.62) and reduced knee flexion during gait (d = -0.90). Cases also demonstrated a number of differences in dynamic plantar pressures (primarily the distribution of the centre of force), ground reaction forces (large effects for timing variables) and also showed reduced peak tibial external rotation moment (d = -1.29). Cases also displayed differences in the timing and amplitude of a number of lower limb muscles but many differences were equivocal.</p> <p>Conclusions</p> <p>There are differences in lower limb biomechanics between those with and without Achilles tendinopathy that may have implications for the prevention and management of the condition. However, the findings need to be interpreted with caution due to the limited quality of a number of the included studies. Future well-designed prospective studies are required to confirm these findings.</p

    Autologous chondrocyte implantation-derived synovial fluids display distinct responder and non-responder proteomic profiles

    Get PDF
    Hulme, Charlotte H. & Wilson, Emma L. - Equal contributorsBackground Autologous chondrocyte implantation (ACI) can be used in the treatment of focal cartilage injuries to prevent the onset of osteoarthritis (OA). However, we are yet to understand fully why some individuals do not respond well to this intervention. Identification of a reliable and accurate biomarker panel that can predict which patients are likely to respond well to ACI is needed in order to assign the patient to the most appropriate therapy. This study aimed to compare the baseline and mid-treatment proteomic profiles of synovial fluids (SFs) obtained from responders and non-responders to ACI. Methods SFs were derived from 14 ACI responders (mean Lysholm improvement of 33 (17–54)) and 13 non-responders (mean Lysholm decrease of 14 (4–46)) at the two stages of surgery (cartilage harvest and chondrocyte implantation). Label-free proteome profiling of dynamically compressed SFs was used to identify predictive markers of ACI success or failure and to investigate the biological pathways involved in the clinical response to ACI. Results Only 1 protein displayed a ≥2.0-fold differential abundance in the preclinical SF of ACI responders versus non-responders. However, there is a marked difference between these two groups with regard to their proteome shift in response to cartilage harvest, with 24 and 92 proteins showing ≥2.0-fold differential abundance between Stages I and II in responders and non-responders, respectively. Proteomic data has been uploaded to ProteomeXchange (identifier: PXD005220). We have validated two biologically relevant protein changes associated with this response, demonstrating that matrix metalloproteinase 1 was prominently elevated and S100 calcium binding protein A13 was reduced in response to cartilage harvest in non-responders. Conclusions The differential proteomic response to cartilage harvest noted in responders versus non-responders is completely novel. Our analyses suggest several pathways which appear to be altered in non-responders that are worthy of further investigation to elucidate the mechanisms of ACI failure. These protein changes highlight many putative biomarkers that may have potential for prediction of ACI treatment success

    Reconstruction versus conservative treatment after rupture of the anterior cruciate ligament: cost effectiveness analysis

    Get PDF
    BACKGROUND: The decision whether to treat conservatively or reconstruct surgically a torn anterior cruciate ligament (ACL) is an ongoing subject of debate. The high prevalence and associated public health burden of torn ACL has led to continuous efforts to determine the best therapeutic approach. A critical evaluation of benefits and expenditures of both treatment options as in a cost effectiveness analysis seems well-suited to provide valuable information for treating physicians and healthcare policymakers. METHODS: A literature review identified four of 7410 searched articles providing sufficient outcome probabilities for the two treatment options for modeling. A transformation key based on the expert opinions of 25 orthopedic surgeons was used to derive utilities from available evidence. The cost data for both treatment strategies were based on average figures compiled by Orthopaedic University Hospital Balgrist and reinforced by Swiss national statistics. A decision tree was constructed to derive the cost-effectiveness of each strategy, which was then tested for robustness using Monte Carlo simulation. RESULTS: Decision tree analysis revealed a cost effectiveness of 16,038 USD/0.78 QALY for ACL reconstruction and 15,466 USD/0.66 QALY for conservative treatment, implying an incremental cost effectiveness of 4,890 USD/QALY for ACL reconstruction. Sensitivity analysis of utilities did not change the trend. CONCLUSION: ACL reconstruction for reestablishment of knee stability seems cost effective in the Swiss setting based on currently available evidence. This, however, should be reinforced with randomized controlled trials comparing the two treatment strategies

    Efficacy of customised foot orthoses in the treatment of achilles tendinopathy : study protocol for a randomised trial

    Get PDF
    BACKGROUND: Achilles tendinopathy is a common condition that can cause marked pain and disability. Numerous non-surgical treatments have been proposed for the treatment of this condition, but many of these treatments have a poor or non-existent evidence base. The exception to this is eccentric calf muscle exercises, which have become a standard non-surgical intervention for Achilles tendinopathy. Foot orthoses have also been advocated as a treatment for Achilles tendinopathy, but the long-term efficacy of foot orthoses for this condition is unknown. This manuscript describes the design of a randomised trial to evaluate the efficacy of customised foot orthoses to reduce pain and improve function in people with Achilles tendinopathy. METHODS: One hundred and forty community-dwelling men and women aged 18 to 55 years with Achilles tendinopathy (who satisfy inclusion and exclusion criteria) will be recruited. Participants will be randomised, using a computer-generated random number sequence, to either a control group (sham foot orthoses made from compressible ethylene vinyl acetate foam) or an experimental group (customised foot orthoses made from semi-rigid polypropylene). Both groups will be prescribed a calf muscle eccentric exercise program, however, the primary difference between the groups will be that the experimental group receive customised foot orthoses, while the control group receive sham foot orthoses. The participants will be instructed to perform eccentric exercises 2 times per day, 7 days per week, for 12 weeks. The primary outcome measure will be the total score of the Victorian Institute of Sport Assessment - Achilles (VISA-A) questionnaire. The secondary outcome measures will be participant perception of treatment effect, comfort of the foot orthoses, use of co-interventions, frequency and severity of adverse events, level of physical activity and health-related quality of life (assessed using the Short-Form-36 questionnaire - Version two). Data will be collected at baseline, then at 1, 3, 6 and 12 months. Data will be analysed using the intention to treat principle. DISCUSSION: This study is the first randomised trial to evaluate the long-term efficacy of customised foot orthoses for the treatment of Achilles tendinopathy. The study has been pragmatically designed to ensure that the study findings are generalisable to clinical practice. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry Number: ACTRN12609000829213
    corecore