5,854 research outputs found

    An Introduction to “Microbial Biogeochemistry: A Special Issue of \u3ci\u3eAquatic Geochemistry\u3c/i\u3e Honoring Mark Hines”

    Get PDF
    (First paragraph) This issue of Aquatic Geochemistry is dedicated to the memory of Dr. Mark E. Hines (Fig. 1) and his contributions to the fields of microbial biogeochemistry and aquatic geochemistry. Mark passed away in March of 2018, and through his career as a researcher, teacher, mentor, colleague, and university administrator, he greatly influenced the lives of all around him. We hope that this volume will serve not only as a memory of Mark, but also as a way to recognize his significant influences and major contributions in the fields of carbon, sulfur, and trace element biogeochemistry

    The fate of minor alkali elements in the chemical evolution of salt lakes

    Get PDF
    Alkaline earth elements and alkali metals (Mg, Ca, Na and K) play an important role in the geochemical evolution of saline lakes as the final brine type is defined by the abundance of these elements. The role of major ions in brine evolution has been studied in great detail, but little has been done to investigate the behaviour of minor alkali elements in these systems despite their similar chemical affinities to the major cations. We have examined three major anionic brine types, chloride, sulphate, and bicarbonate-carbonate, in fifteen lakes in North America and Antarctica to determine the geochemical behaviour of lithium, rubidium, strontium, and barium. Lithium and rubidium are largely conservative in all water types, and their concentrations are the result of long-term solute input and concentration through evaporation and/or sublimation. Strontium and barium behaviours vary with anionic brine type. Strontium can be removed in sulphate and carbonate-rich lakes by the precipitation of carbonate minerals. Barium may be removed in chloride and sulphate brines by either the precipitation of barite and perhaps biological uptake

    THE ROLE OF AEOLIAN DUST IN NUTRIENT AND SOLUTE TRANSPORT IN THE MCMURDO DRY VALLEYS, ANTARCTICA

    Get PDF
    The McMurdo Dry Valleys (MDV), the largest ice-free expanse in Antarctica, are considered a polar desert with an average annual temperature of -20oC and annual precipitation of \u3c10cm. Despite the extremely arid climate, a hydrologic continuum exists during the austral summer when ephemeral streams formed from glacial meltwater flow into endorheic lakes. Dust is deposited by strong seasonal winds onto the glacier and lake surfaces, as well as in widespread aeolian landforms throughout the MDV. Katabatic winds from the west, probably responsible for the majority of lithogenic dust deposition, dominate during the winter months. Easterly winds from the coast, prominent during the summer, contribute to the dust budget through the addition of salts and marine aerosols. When considered in the context of the unique hydrologic continuum and the climate-sensitivity of the environment, the dissolution of deposited dust may have an impact on salt and nutrient transfer and thus the ecosystem of the MDV. We have simulated this dissolution by conducting a two-step H2O leaching experiment on aeolian sediments collected from select glaciers, lakes, aeolian landforms, and elevated sediment traps. Resulting leachates representing the interaction of 50mL H2O with 25 g of dust sample were analyzed for major ions. NO3- concentrations (leach 1: \u3c1.0-240 µM; leach 2: \u3c1.0-94 µM) generally increase to the west and imply that aeolian deposition is potentially important to the nitrogen cycle in the MDV. Total dissolved solid concentrations (leach 1: 9-544 mg/L; leach 2: 6-150 mg/L), however, do not show any geographic/spatial correlation which is not consistent with previous work and suggests the significance of dust dissolution to the environment. Aliquots of the total dust were also analyzed for total C and N values. All but two samples, Lake Fryxell (0.12% N) and the eastern side of the Commonwealth Glacier (0.09% N), were below detection limit with respect to N (\u3c0.08% N). Both samples are from the Fryxell basin, the youngest of the basins, that is nitrogen limited. C values ranged from below detection (\u3c0.04% C) to 1.27% C. These results attest to the importance of dust as an addition to the ecosystem of the MDV. Further investigation of the dust is planned to constrain its chemical and mineralogical composition

    The Glaciochemistry of Snowpits from Quelccaya Ice Cap, Peru, 1982

    Get PDF
    We present glaciochemical data from a pilot study of two snow-pits from Quelccaya ice cap, Peruvian Andes. These are the first samples to be analyzed from Quelccaya for nitrate and sulfate by ion chromatography (IC), for nitrate-plus-nitrite, reactive silicate and reactive iron by colorimetry, and for sodium by atomic absorption spectrophotometry. The 3 m pits used in this study represent a one year record of mass accumulation and the 29 samples collected provide the first glaciochemical data from this area which can be compared with glaciochemical studies from other locations. Reactive iron, reactive silicate and sodium, and the profiles of \u3e0.63µm microparticles from Thompson and others (1984) are coincident, suggesting that transport and deposition into this area of each species are controlled by similar processes. The common source is probably local, resulting from crustaI weathering. In general, the reactive silicate values are lower than those observed in other alpine glacier ice. The highest sulfate and nitrate values were observed in the upper few centimeters of the snow-pit. Most of the sulfate concentrations were less than 3 µM and are similar to values obtained for fresh surface snows from Bolivia (Stallard and Edmond 1981). Since biological gaseous emissions are thought to be the major source of sulfur and nitrogen to the atmosphere over the Amazon basin, the sulfate and nitrate fluctuations may be due to seasonal biological input and/or seasonal shifts in wind direction bringing material to Quelccaya. With only one exception, the colorimetric nitrate-plus-nitrite data were higher than the IC nitrate data. Unfortunately, the IC analyses were conducted 81 d after the colorimetric analyses. The difference between the two data sets could be attributable to the following; (I) the colorimetric technique may yield erroneously high results as suggested for polar ice by Herron (1982), (2) the IC technique yields erroneously low results due, in part, to the possible exclusion of nitrite concentrations, and/or (3) nitrite was lost via biological removal during the 81 d period before the IC analyses. If the IC data are correct, the mean nitrate value is O.4 µM (n = 29). This value is similar to those reported from pre-industrial aged polar ice (Herron 1982). If the colorimetric mean value (1.1 µM) is correct, it is similar to colorimetrically determined values from other high-elevation alpine ice (Lyons and Mayewski 1983)

    Source of Lake Vostok Cations Constrained with Strontium Isotopes

    Get PDF
    Lake Vostok is the largest sub-glacial lake in Antarctica. The primary source of our current knowledge regarding the geochemistry and biology of the lake comes from the analysis of refrozen lake water associated with ice core drilling. Several sources of dissolved ions and particulate matter to the lake have been proposed, including materials from the melted glacier ice, the weathering of underlying geological materials, hydrothermal activity and underlying, ancient evaporitic deposits. A sample of Lake Vostok Type 1 accretion ice has been analyzed for its 87Sr/86Sr signature as well as its major cation and anion and Sr concentrations. The strontium isotope ratio of 0.71655 and the Ca/Sr ratio in the sample strongly indicate that the major source of the Sr is from aluminosilicate minerals from the continental crust. These data imply that at least a portion of the other cations in the Type 1 ice also are derived from continental crustal materials and not hydrothermal activity, the melted glacier ice, or evaporitic sources

    The Dominion Range Ice Core, Queen Maud Mountains, Antarctica - General Site and Core Characteristics with Implications

    Get PDF
    The Transantarctic Mountains of East Antarctica provide a new milieu for retrieval of ice-core records. We report here on the initial findings from the first of these records, the Dominion Range ice-core record. Sites such as the Dominion Range are valuable for the recovery of records detailing climate change, volcanic activity, and changes in the chemistry of the atmosphere. The unique geographic location of this site and a relatively low accumulation rate combine to provide a relatively long record of change for this potentially sensitive climatic region. As such, information concerning the site and general core characteristics are presented, including ice surface, ice thickness, bore-hole temperature, mean annual net accumulation, crystal size, crystal fabric, oxygen-isotope composition, and examples of ice chemistry and isotopic composition of trapped gases

    Modelling the behaviour of the bonding of fibre reinforced concrete at the plate end

    Get PDF
    Comunicação apresentada em International Symposium Polymers in Concrete (ISPIC 2006), Guimarães, 2006In this paper, the finite element method is used to analyse the behaviour of concrete externally strengthened by fibre reinforced polymers (FRP). This model aims to analyse the stress distribution in the FRP-concrete interface at the plate end of a bending beam. The behaviour of the concrete-poxy-FRP arrangement is modelled with interface elements with initial zero thickness, using a discrete crack approach. A localized damage model is adopted for the interface and a parametric study is performed to approximate the material parameters adopted. The importance of each parameter is assessed. This model is subsequently verified using experimental data collected from the literature. Finally, a proposal is made concerning the adoption of a relation GF II/GF for the interface behaviour. Mention is also made to some of the main mathematical models found in the literature, which are compared to the present approach

    An Ice-Core-Based, Late Holocene History for the Transantarctic Mountains, Antarctica

    Get PDF
    Ice core records (major anions and cations, MSA, oxygen isotopes and particles) developed from two shallow (~200 m depth) sites in the Transantarctic Mountains provide documentation of much of the Holocene paleoenvironmental history of this region. From the more southerly site, Dominion Range, an ~7000-year-long record reveals change in the influence of tropospheric transport to the region. At this site, milder conditions and increased tropospheric inflow prior to ~1500 yr BP are characterized by increased seasalt (ss), terrestrial and marine biogenic inputs. Increased persistence and/or extent of polar stratospheric clouds accompanying generally cooler conditions characterize much of the period since ~1500 yr BP. From the more northerly site, Newall Glacier, the dramatic influence of the retreat of grounded ice from McMurdo Sound dated at[Denton et al., 1989] dominates much of the ice core record. This regional environmental change is documented by massive influxes to the core site of evaporitic salts from areas exposed during low lake level stands. During the past ~150 yr, both Dominion Range and Newall Glacier appear to be experiencing an overall increase in the exposure of ice-free terrain
    corecore