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ABSTRACT 

 

In this paper, the finite element method is used to analyse the behaviour of concrete 

externally strengthened by fibre reinforced polymers (FRP). This model aims to analyse the 

stress distribution in the FRP-concrete interface at the plate end of a bending beam. The 

behaviour of the concrete-epoxy-FRP arrangement is modelled with interface elements with 

initial zero thickness, using a discrete crack approach. A localized damage model is adopted 

for the interface and a parametric study is performed to approximate the material parameters 

adopted. The importance of each parameter is assessed. This model is subsequently verified 

using experimental data collected from the literature. Finally, a proposal is made concerning 

the adoption of a relation GF
II
/GF for the interface behaviour. Mention is also made to some of 

the main mathematical models found in the literature, which are compared to the present 

approach. 

1. INTRODUCTION 

In recent years, the use of composite materials applied to the external strengthening of 

concrete structures has increased due to their mechanical properties, ease of application and 

high strength-to-weight ratio. The major problems found with this technique are the local 

failure modes. Results from experiments reveal that the strength of a glued concrete-FRP 

(fibre reinforced polymers) bond is determined, in most cases, by the high interfacial stresses. 

Thus, there is a clear need to study the nature of the bonding as well as developing techniques 

to permit its design modelling and an accurate quantification of the adherence between the 

concrete and the reinforcing material. 
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The stress distribution on pure shear test models does not precisely match the one 

obtained in bending reinforcement; in the latter, according to various authors, Malek et 

al.(1998), Rabinovitch et al. (2000) and Täljsten (1994), in addition to the stresses tangential 

to the interface, normal stresses are also important. The stress concentrations at the FRP end 

can be the cause of the collapse of the strengthened concrete beam. This type of local failure 

generally occurs along a portion of concrete attached to the epoxy-fibre layers, the latter 

remaining intact. In these cases, the evaluation of the energy dissipated per unit of cracked 

surface involves both the fracture energy of concrete in mode I and II, denoted by GF
II
 and GF, 

respectively. Several experimental and numerical tests have been carried out to study mixed 

mode fracture. However, the definition of these material parameters is still not well 

established and the numerical and experimental results reported have often been 

contradictory. Bazant et al. (1986) and Ozbolt et al. (1998) proposed for GF
II
 values about 25 

times greater than GF. Alfaiate et al. (1998) performed numerical analyses of notched beams 

subjected to shear and did not detect any significant differences on the value of the failure 

load when GF
II
/GF varied from 1 to 100. Such result was confirmed by Gálvez et al. (1998), 

who carried out a similar study. Täljsten (1994) performed a set of experimental tests for 

determining both values of GF and GF
II
. The mode II fracture energy was determined 

submitting a concrete specimen to both compression and shear. The values determined for 

GF
II
 were found to be 10 times greater than the value of GF. 

In this paper, special attention is paid to the stress concentration at the FRP end. 

Subsequent to previous shear-stress studies (Neto et al. (2004)), a numerical model is 

presented which aims to analyse the stress distribution at the FRP-concrete interface of the 

composite end of a bending beam. The bond between the FRP and the concrete is modelled 

using a discrete crack approach based on non-linear fracture mechanics (Hillerborg et al. 

(1976)). Interface elements with zero initial thickness were considered. The shear and peeling 

stresses developed at these elements are dependent on the relative displacement between the 

strengthening material and the concrete surface, according to a local constitutive relationship. 

The material properties that characterize the interface, namely the shear and peeling stiffness, 

the cohesion, the tensile strength and the fracture energy in modes I and II, are obtained from 

a parametric study using experimental data from strengthened reinforced concrete bending 

beams. From the analysis of the results numerically obtained, it is possible to conclude that 

mode II fracture plays an important role on these tests and a range of values is proposed for 

GF
II
. It is expected that this work may contribute to a better comprehension of the stress 

transfer mechanisms between the concrete and the strengthening material, particularly with 

respect to the qualitative and quantitative definition of mixed mode fracture of concrete. 

2. EXPERIMENTAL TESTING 

In this section, the bending tests conducted by Dias et al. (2002) are analyzed. Among 

the several experimental models tested by Dias et al. (2002), the reinforced concrete beam 

strengthened with carbon fibre laminates was considered. Figure 1 illustrates the geometry, 

the internal and external reinforcing schemes and the boundary conditions.  

The four point beams had a 0.12×0.18m
2
 cross section, a total length of 1.95m and a 

span of 1.80m. The unidirectional carbon fibres were glued, by means of resin epoxy, to 

reinforced concrete beams with a bond length of 1.74m. One layer of tf=1.4mm thickness 

were adopted presenting a bf=20mm width. 

The MBrace HM laminate FRP system was used. The nominal values for the Young’s 

modulus and the ultimate tensile strain of the CFRP were 200GPa and 1.1%, respectively. 

The adhesive’s Young’s modulus was 7GPa. Mean values of 47.7MPa, 4.0MPa and 31.1GPa, 

for the cylinder compressive strength, tensile strength and Young’s modulus of concrete, 



respectively, were obtained experimentally. For the steel, mean values of the yielding stress of 

555MPa (φ6) and 533MPa (φ8) were found from the tests. 

 

 

Figure 1 – Geometry, reinforcing schemes and boundary conditions. 

3. NUMERICAL MODELLING 

3.1. Constitutive relationships 

Taking into account the objective of this study, namely the evaluation of shear and 

peeling stresses at the plate end, a linear elastic and isotropic constitutive relationship was 

adopted for the reinforced concrete. Thus, to simulate the loss of stiffness of the reinforced 

element, two different Young modules were adopted for the concrete as shown in Figure 2: i) 

the first one simulates the cracked concrete and ii) the second one takes into account the 

internal reinforcement yielding. The determination of these values was based on the 

experimental results mentioned above (Dias et al. (2002)). The contribution of the CFRP to 

the beam stiffness was observed to be negligible. 

 

 

Figure 2 – Structure response and Young’s modulus adopted for concrete. 

The tensile behaviour of the FRP may be assumed as linear elastic until failure.  

The bond between concrete, resin and CFRP was modelled using interface elements of 

zero initial thickness and a discrete crack approach. A multi-surface plasticity model was 

adopted (Alfaiate et al. (1998) and Lourenço et al. (1997)); two limit surfaces are considered: 

a tension cut-off for mode I fracture and a Coulomb friction envelope for mode II failure, as 

shown in Figure 3. In this figure, the horizontal axis represents the normal stress vector 

component and the vertical axis represents the tangential stress vector component measured at 

the interface. The cut-off mode I is defined by the tensile strength of the concrete. This value 
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is initially considered equal to 4.0MPa, obtained from pull-off tests (Dias et al. (2002)). The 

Coulomb friction envelope is initially characterized by the cohesion coefficient and by the 

internal friction angle φ. Both yield functions follow exponential softening flow rules 

(Figure 4).  

 

Figure 3 – Yield surfaces adopted for the interface. 

 

The tension mode yield function is given by: 
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where σn is the stress vector component measured in the interface. An associated flow rule is 

considered. The shear mode yield function reads: 
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where τ is the tangential stress vector component measured in the interface. A non-associated 

flow rule is adopted with a plastic potential gs given by: 

 

ctanψστg ns −+= ,                                                            (3) 

 

where ψ is the dilantancy angle. An isotropic softening criterion is adopted, meaning that both 

yield surfaces shrink the same relative amount in the stress space, and both keep the origin 

(Figure 3). 

 

Figure 4 – Normal and tangential constitutive relationships adopted for the interface. 
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The material parameters characterizing the interface behaviour are: the elastic shear 

and peeling stiffness, ks and kn, respectively, the cohesion c, the tensile strength ft, and the 

fracture energies in mode I and II, GF and GF
II
, respectively (area under the curves σn-w and 

τ-s adopted as shown in Figure 4). 

3.2. Numerical Implementation 

The numerical analysis was performed using the finite element method. The elements 

used for concrete were 4-node and 5-node isoparametric. For the strengthening material, 4-

-node isoparametric elements were adopted (instead of the linear 2-node element used in 

previous analyses (Neto et al. (2004)). These elements allow for taking into account the 

bending stiffness of the composite. The bond between concrete, resin, and CFRP was 

modelled by linear interface elements. The specimen response was determined under 

displacement control, using an incremental and iterative procedure, according to the following 

algorithm: 

1. evaluation of the incremental stiffness matrix of the structure K; 

2. solving of the system of equations K∆u=∆λF, where ∆u is the incremental displacement 

vector, ∆λ is the load increment size and F is the nodal force vector; 
3. evaluation of the internal forces Fi. The Newton-Raphson and the arc length methods are 

used for obtaining convergence towards a solution without unbalanced forces. If equilibrium 

is not reached within a prescribed tolerance, a new iteration must be performed; otherwise 

proceed to step 4; 

4. update of the total variables, application of another load increment ∆λ and return to step 1.  
The symmetric two-dimensional finite element mesh adopted is presented in Figure 5, 

as well as the obtained structure deformation. In the FRP end, a more refined mesh was 

considered to capture the high stress gradient which is expected in this region. 

 

 

Figure 5 – Finite element mesh adopted and structure deformation. 

3.3. Numerical analysis 

As mentioned above, the constitutive relationship of the interface concrete-CFRP is 

defined by six parameters: the shear and peeling stiffness, the cohesion, the tensile strength 

and the fracture energy in mode I and II. In the present analysis only debonding failure was 

acknowledged. In agreement with Malek et al. (1998), the stiffness of the interface depends 

on the adhesive properties according to: 

aan tEk =                                                           (4) 

and 

( )( )aas tυ12Ek += ,                                                          (5) 



where υ is the Poisson coefficient, Ea is the Young’s modulus for adhesive and ta is the 

thickness of the adhesive. According to experimental and fabricant data, the values adopted 

for the calculation of the interface stiffness were: Ea=7000MPa, υ=0.3 and ta=1.75mm, the 

latter value lying between 1.5mm and 2.0mm. Thus, according to eqs. (4) and (5),we obtain 

kn=4000MPa/mm and ks=1500MPa/mm. 

The value of the cohesion was defined taking into account the dependence, mentioned 

in several works as seen in Neto (2003), between this value and the mean value of the 

concrete tensile strength. A cohesion value c=7MPa was adopted. The value of ft corresponds 

to the tests results by Dias et al. (2002).  

For the mode II fracture energy, a value GF
II
=1.5N/mm was defined; this value was 

predicted taking in to account that the concrete used in this study presents higher mechanical 

characteristics than the one considered in Neto et al. (2004). Assuming a relation GF
II
/GF=10 

(Täljsten (1994)), we obtain GF=0.15 N/mm. 

Next, a numerical study of the behaviour of the beam strengthened with CFRP was 

performed. The distribution of stresses obtained with the finite element method is represented 

in Figures 6 to 10. It is possible to notice that shear stress distribution is similar to the one 

obtained in a pure shear model (Neto et al. (2004)). In the extremity of the CFRP, normal 

stresses appear. These stresses are tensile stresses along a small length, becoming 

compressive stress afterwards, almost vanishing along a length of approximately 10mm. This 

result is confirmed by Rabinovich et al. (2000), who claims that this distance corresponds to 

3-4 times the adhesive thickness. High interfacial stresses can be observed in this region 

(Figures 9 and 10). Along the beam span there are also interfacial stresses (shear stresses), as 

shown in the Figures 6 to 8, presenting elastic values, caused by the beam deformation. 

The maxim value of P was 43.3kN, corresponding to a much larger value than the one 

experimentally observed. As a consequence, it can be concluded that this local failure mode is 

not important here. This result seems to be in accordance with the result experimentally 

observed. The observed behaviour in an experimental model, which only differs from the 

numerical model in the introduction of exterior fixation mechanisms in the extremity of the 

laminate, was quite similar to the presented one. 

In order to analyse the importance of each material parameter which influences the 

bond behaviour, a parametric study was performed; the corresponding results are presented in 

Table 1. From Table 1 it can be concluded that the cohesion is the material parameter which 

presents a more pronounced influence on the resistance of the connection. Interestingly, in 

Neto et al. (2004) it was found that the most important parameter influencing the strength of 

the connection was the fracture energy. In comparison to a pure shear model, the shear 

stresses are distributed along a bigger length, as shown in Figures 6 to 10, due to the bending 

deformation. The stresses along the span region are elastic. Within the elastic limit, the 

cohesion is the parameter which contributes most to the noticed variations of the maximum 

load (Figure 10b)). The peeling stresses are present in a much reduced length compared to the 

shear stresses, the fracture energy playing a more important role than ft. 

Table 1 – Influence of the material parameters in the value of the beam maximum load. 

kn/4000 0.1 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

ks/1500 1.0 1.0 0.10 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

ft/4.0 1.0 1.0 1.0 1.0 0.3 0.5 0.3 1.0 1.0 1.0 1.0 1.0 

c/7.0 1.0 1.0 1.0 1.0 1.0 1.0 0.2 1.4 1.0 1.0 1.0 1.0 
I

FG /0.15 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.1 10.0 1.0 1.0 
II

FG /1.50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 2.0 

Pmax/43.3 1.0 1.0 1.0 1.0 1.0 1.1 0.4 1.2 0.6 1.1 0.9 1.1 
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Figure 6 – Interfacial stresses along the beam with Pmax=13.0kN (tf=1.4mm). 
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Figure 7 – Interfacial stresses along the beam with Pmax=27.7kN (tf=1.4mm). 
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Figure 8 – Interfacial stresses along the beam with Pmax=41.9kN (tf=1.4mm). 
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 (a) (b) 

Figure 9 – Detail of the interfacial stresses (tf=1.4mm): (a) Pmax=7.2kN, (b) Pmax=27.7kN. 
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Figure 10 – (a) Detail of the interfacial stresses (tf=1.4mm): Pmax=41.9kN, (b) Distinction 

between elastic and non elastic phase. 

Note that one of the cases corresponded to considerer c=1.5MPa and ft=1.0MPa, since 

ft>c would be physically unacceptable. In this case the rupture occurred for Pmax=18.4kN, 

around 40% of the value of the maximum load obtained for the initially defined parameters. 

This reduction is due to a shrinkage of the surface limit (Figure 3) since ft and c decreased 

simultaneously. This value of Pmax is approximately equal to the experimental value. Thus, the 

methodology presented by Malek et al. (1998) for the evaluation of the maximum interfacial 

stresses was applied with c=1.5MPa and ft=1.0MPa. The stress values obtained at x=30mm 

were: τmax=1.5MPa and σn,max=0.8MPa. This author considers complete composite action 

between plate and concrete. The distribution of stresses along the span corresponds to the 

limit of the elastic phase. The elastic fraction of the load is approximately 16% of the 

maximum load value, which shows that the resistance of the connection is poorly mobilized. 

The small stress concentration found in the laminate end of the beam may be due to 

the fact that the composite thickness is small enough to mobilize peeling stresses leading to 

failure. 

With the objective of evaluating the importance of the thickness of the reinforcement a 

similar analysis is next described, considering now tf=6mm. This value of the thickness was 

chosen based on Malek’s et al. (1998) work. The numerical distribution of stresses is shown 

in Figures 11 to 15. Peeling stresses are present at the plate end, together with shear stress 



concentrations (Figures 14 and 15). Along the span, elastic shear stresses at the interface are 

also present due to the beam deformation. From Figures 11 to 15 can be observed that peeling 

stresses plays a more important role than the one considering tf =1.4mm. 
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Figure 11 – Interfacial stresses along the beam with Pmax=5.7kN (tf=6.0mm). 
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Figure 12 – Interfacial stresses along the beam with Pmax=15.5N (tf=6.0mm). 
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Figure 13 – Interfacial stresses along the beam with Pmax=22.0kN (tf=6.0mm). 
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 (a) (b) 

Figure 14 – Detail of the interfacial stresses (tf=6.0mm): (a) Pmax=5.7kN, (b) Pmax=15.5kN. 
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Figure 15 – Detail of the interfacial stresses (tf=6.0mm): Pmax=22.0kN. 

The maximum load was now equal to 23.0kN, circa 53% of the previous value 

(43.3kN). Thus, in spite of the greater reinforcement area, the strength of the beam has 

decreased due to the increase of the thickness of the laminate, giving rise to higher peeling 

stresses. In the Figure 16 a detail of the finite element mesh in the FRP end is presented, 

showing the laminate detachment. 

 

 

 Figure 16 – Detail of the detachment in the CFRP end. 

In order to better understand the influence of the reinforcement dimensions, the CFRP 

width was increased to bf=85.7mm taking tf=1.4mm, thus keeping the same reinforcement 

area as before (tf=6mm, bf=20mm). The maximum load obtained was now Pmax=62kN, more 

than 2.5 times the load capacity obtained with tf=6mm. This value was also higher than the 



one obtained with tf=1.4mm and bf=20mm. From these results it can be concluded that, 

whenever possible, it is preferable to increase the width instead of the thickness of the CFRP. 

Moreover, more layers are more difficult to execute. 

From the parametric study performed, the results obtained with tf=6mm and bf=20mm 

were similar to the ones presented in Table 1. Note that the maximum value P=23kN, 

although still higher than the experimental maximum value, is closer to this one; nevertheless, 

the reinforcement areas are distinct. 

4. CONCLUSIONS 

The research focused on the computational modelling, based on non-linear fracture 

mechanics, of the stress distribution in the FRP-concrete interface at the plate end of a 

bending beam. 

The material properties used in the characterization of the interface behaviour, were: 

the shear and peeling stiffness, the cohesion, the tensile strength and the fracture energy in 

modes I and II. 

The shear stress distribution was observed to be similar to the one obtained in a pure 

shear model. In the CFRP end, normal stresses to the interface appear. These stresses are first 

tensile in a small length, changing into compressive stresses and almost vanishing in a length 

of approximately 10mm. High interfacial stresses can be observed in this region.  

The maximum value of P was much larger than the experimentally observed, which 

can be concluded that this is a non important local failure mode in this case. 

The cohesion is the material parameter which influences most the resistance of the 

connection. The fracture energy assumes a less important role than the one observed in the 

pure shear models. In mode I, the fracture energy plays a more important role than ft. From 

this study a ratio of GF
II
/GF between 10 and15 seems adequate. 

The simultaneous variation of ft and c shows a bigger influence in the variation of the 

maximum load. 

According to the methodology presented by Malek et al. (1998) for the calculation of 

the maximum interfacial stresses, these occur for the limit elastic value of the load, 

approximately 16% of the maximum value. As a consequence, it can be concluded that the 

resistance of the connection is poorly mobilized. 

The stress concentration noticed in the laminate end of the beam is found to play a non 

important role in the global behaviour of he beam; in fact, the composite thickness is less than 

adequate to mobilize peeling stresses capable leading to failure. 

Admitting the possibility of mode II fracture taking place, according to the 

methodology presented in Neto (2003) based on the rectangular simplified diagram method, 

the obtained maximum load was 81% of the theoretical value. In accordance with the above 

mentioned work, the theoretical value of the maximum load is, in general, smaller than the 

real value. Thus, it is possible to conclude that mode II fracture is important in beams 

reinforced with FRP, because, in general, the thickness considered is small. Applying this 

model (Neto (2003)) to the beam without external reinforcement, it is found that the 

maximum theoretical and experimental loads perfectly match. 

The methodologies presents in the FIB report 14 (FIB (2001)) only consider the mode 

II of fracture, which is adapted to the general cases with FRP reinforcement, taking into 

account the small thickness adopted. 

The maximum load with tf=6mm was around 53% of the value referring to tf =1.4mm 

due to the increase of the peeling stresses. 



The importance of the stress concentration in the failure of the bending beam was 

observed for high thickness of the reinforcement, and this is why mechanisms of anchorage 

are adopted when metal plates are used. 

Finally, it was also possible to conclude that, whenever possible, it is preferable to 

increase the width instead of the thickness of the CFRP. This option also leads to a less 

amount of material, consequently, less cost. Moreover, more layers are more difficult to 

execute. 
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