3,324 research outputs found
Coal Stratigraphy and Flora of the Northwestern Narragansett Basin
Guidebook for field trips to the Boston area and vicinity : 68th annual meeting, New England Intercollegiate Geological Conference, October 8-10, 1976: Trip B-1
Use Cases for Abnormal Behaviour Detection in Smart Homes
While people have many ideas about how a smart home should react to particular behaviours from their inhabitant, there seems to have been relatively little attempt to organise this systematically. In this paper, we attempt to rectify this in consideration of context awareness and novelty detection for a smart home that monitors its inhabitant for illness and unexpected behaviour. We do this through the concept of the Use Case, which is used in software engineering to specify the behaviour of a system. We describe a set of scenarios and the possible outputs that the smart home could give and introduce the SHMUC Repository of Smart Home Use Cases. Based on this, we can consider how probabilistic and logic-based reasoning systems would produce different capabilities
Power-recycled weak-value-based metrology
We improve the precision of the interferometric weak-value-based beam
deflection measurement by introducing a power recycling mirror, creating a
resonant cavity. This results in \emph{all} the light exiting to the detector
with a large deflection, thus eliminating the inefficiency of the rare
postselection. The signal-to-noise ratio of the deflection is itself magnified
by the weak value. We discuss ways to realize this proposal, using a transverse
beam filter and different cavity designs.Comment: 5 pages, 1 figur
LoCoH: nonparameteric kernel methods for constructing home ranges and utilization distributions.
Parametric kernel methods currently dominate the literature regarding the construction of animal home ranges (HRs) and utilization distributions (UDs). These methods frequently fail to capture the kinds of hard boundaries common to many natural systems. Recently a local convex hull (LoCoH) nonparametric kernel method, which generalizes the minimum convex polygon (MCP) method, was shown to be more appropriate than parametric kernel methods for constructing HRs and UDs, because of its ability to identify hard boundaries (e.g., rivers, cliff edges) and convergence to the true distribution as sample size increases. Here we extend the LoCoH in two ways: "fixed sphere-of-influence," or r-LoCoH (kernels constructed from all points within a fixed radius r of each reference point), and an "adaptive sphere-of-influence," or a-LoCoH (kernels constructed from all points within a radius a such that the distances of all points within the radius to the reference point sum to a value less than or equal to a), and compare them to the original "fixed-number-of-points," or k-LoCoH (all kernels constructed from k-1 nearest neighbors of root points). We also compare these nonparametric LoCoH to parametric kernel methods using manufactured data and data collected from GPS collars on African buffalo in the Kruger National Park, South Africa. Our results demonstrate that LoCoH methods are superior to parametric kernel methods in estimating areas used by animals, excluding unused areas (holes) and, generally, in constructing UDs and HRs arising from the movement of animals influenced by hard boundaries and irregular structures (e.g., rocky outcrops). We also demonstrate that a-LoCoH is generally superior to k- and r-LoCoH (with software for all three methods available at http://locoh.cnr.berkeley.edu)
Exploring The Responsibilities Of Single-Inhabitant Smart Homes With Use Cases
DOI: 10.3233/AIS-2010-0076This paper makes a number of contributions to the field of requirements analysis for Smart Homes. It introduces Use Cases as a tool for exploring the responsibilities of Smart Homes and it proposes a modification of the conventional Use Case structure to suit the particular requirements of Smart Homes. It presents a taxonomy of Smart-Home-related Use Cases with seven categories. It draws on those Use Cases as raw material for developing questions and conclusions about the design of Smart Homes for single elderly inhabitants, and it introduces the SHMUC repository, a web-based repository of Use Cases related to Smart Homes that anyone can exploit and to which anyone may contribute
A plastic-damage constitutive model for the finite element analysis of fibre reinforced concrete
A unique constitutive model for fibre reinforced concrete (FRC) is presented, which combines a number of mechanics-based sub models for the simulation of directional cracking, rough crack contact and the crack-bridging action of fibres. The model also contains a plasticity component to simulate compressive behaviour. The plasticity component employs a frictional hardening/softening function which considers the variation of compressive strength and strain at peak stress with fibre content. Numerical results from a range of single-point and finite element simulations of experimental tests show that the model captures the characteristic behaviour of conventional fibre reinforced concrete with good accuracy
Stock Identification of summer Flounder (Paralichthis dentatus) in the Southern Mid-Atlantic Bight
A total of 12, 339 summer flounder were tagged from Virginia waters during 1987-89. A total of 874 were recaptured for an overall return rate of 7 . 1%. Most of the returns ( 48.5%) were from Virginia waters, or areas to the south. A smaller number ( 21.6%) were from areas north and offshore of Virginia. Another 29. 9% were recaptured and returned with inadequate location data. Examining only the returns with adequate location data, yielded a separation of 69.2% and 30.8% between the groups. No differences were noted in the sizes at tagging between these groups. Tagged flounder held at VIMS exhibited no behavioral differences from untagged fish. No differences in growth and mortality were noted in these fish. The sex ratio of males to females was 1:1.16. Male summer flounder reached 50% maturity at approximately 280 mm, while females reached 50% maturity at about 330 mm. A total of 1040 flounder were successfully aged. The population was dominated by young fish ( 0- 2 years old). The compression of age structure i s indicative of a population being heavily overfished
Breast Milk, a Source of Beneficial Microbes and Associated Benefits for Infant Health
peer-reviewedHuman breast milk is considered the optimum feeding regime for newborn infants due to its ability to provide complete nutrition and many bioactive health factors. Breast feeding is associated with improved infant health and immune development, less incidences of gastrointestinal disease and lower mortality rates than formula fed infants. As well as providing fundamental nutrients to the growing infant, breast milk is a source of commensal bacteria which further enhance infant health by preventing pathogen adhesion and promoting gut colonisation of beneficial microbes. While breast milk was initially considered a sterile fluid and microbes isolated were considered contaminants, it is now widely accepted that breast milk is home to its own unique microbiome. The origins of bacteria in breast milk have been subject to much debate, however, the possibility of an entero-mammary pathway allowing for transfer of microbes from maternal gut to the mammary gland is one potential pathway. Human milk derived strains can be regarded as potential probiotics; therefore, many studies have focused on isolating strains from milk for subsequent use in infant health and nutrition markets. This review aims to discuss mammary gland development in preparation for lactation as well as explore the microbial composition and origins of the human milk microbiota with a focus on probiotic development
Insight into Genotype-Phenotype Associations through eQTL Mapping in Multiple Cell Types in Health and Immune-Mediated Disease
Genome-wide association studies (GWAS) have transformed our understanding of the genetics of complex traits such as autoimmune diseases, but how risk variants contribute to pathogenesis remains largely unknown. Identifying genetic variants that affect gene expression (expression quantitative trait loci, or eQTLs) is crucial to addressing this. eQTLs vary between tissues and following in vitro cellular activation, but have not been examined in the context of human inflammatory diseases. We performed eQTL mapping in five primary immune cell types from patients with active inflammatory bowel disease (n = 91), anti-neutrophil cytoplasmic antibody-associated vasculitis (n = 46) and healthy controls (n = 43), revealing eQTLs present only in the context of active inflammatory disease. Moreover, we show that following treatment a proportion of these eQTLs disappear. Through joint analysis of expression data from multiple cell types, we reveal that previous estimates of eQTL immune cell-type specificity are likely to have been exaggerated. Finally, by analysing gene expression data from multiple cell types, we find eQTLs not previously identified by database mining at 34 inflammatory bowel disease-associated loci. In summary, this parallel eQTL analysis in multiple leucocyte subsets from patients with active disease provides new insights into the genetic basis of immune-mediated diseases.This research was funded by a Wellcome Trust Clinical PhD Programme Fellowship (JEP), the NIH-Oxford-Cambridge Scholars Program (ACR), Wellcome Trust Grant 083650/Z/07/Z and MRC Grant MR/L19027/1 (KGCS), and the National Institute for Health Research Cambridge Biomedical Research Centre. KGCS is a National Institute for Health Research Senior Investigator. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Recommended from our members
Relationship between the tissue-specificity of mouse gene expression and the evolutionary origin and function of the proteins.
BACKGROUND: The combination of complete genome sequence information with expression data enables us to characterize the relationship between a protein's evolutionary origin or functional category and its expression pattern. In this study, mouse proteins were assigned into functional and phyletic groups and the gene expression patterns of the different protein groupings were examined by microarray analysis in various mouse tissues. RESULTS: Our results suggest that the proteins that are universally distributed in all tissues are predominantly enzymes and transporters. In contrast, the tissue-specific set is dominated by regulatory proteins (signal transduction and transcription factors). An increased tendency to tissue-specificity is observed for metazoan-specific proteins. As the composition of the phyletic groups highly correlates with that of the functional groups, the data were tested in order to determine which of the two factors -- function or phyletic age -- is dominant in shaping the expression profile of a protein. The observed differences in expression patterns of genes between functional groups were found mainly to reflect their different phyletic origin. The connection between tissue specificity and phyletic age cannot be explained by the recent rate of evolution. Finally, although metazoan-specific proteins tend to be tissue-specific compared with phyletically conserved proteins present in all domains of life, many such 'universal' proteins are also tissue-specific. CONCLUSION: The minimal cellular transcriptome of the metazoan cell differs from that of the ancestral unicellular eukaryote: new functions were added (metazoan-specific proteins), whilst other functions became specialized and no longer took place in all cells (tissue-specific pre-metazoan proteins).RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
- …