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We improve the precision of the interferometric weak-value-based beam deflection measurement by
introducing a power recycling mirror, creating a resonant cavity. This results in all the light exiting to the
detector with a large deflection, thus eliminating the inefficiency of the rare postselection. The signal-to-
noise ratio of the deflection is itself magnified by the weak value. We discuss ways to realize this proposal,
using a transverse beam filter and different cavity designs.

DOI: 10.1103/PhysRevLett.114.170801

The weak value amplification effect, introduced by
Aharonov, Albert, and Vaidman [1], permits a small change
in a system-meter coupling parameter to be converted into a
large change in a meter variable. This effect comes at the
sacrifice of only measuring a small postselected fraction of
the events experiencing the amplified meter variable. This
gain and loss balance each other, leading to the same
signal-to-noise ratio (SNR) of the measured parameter as
would be found if the measurement were made directly,
provided the system is ideal [2]. The effect may also be
viewed as a concentration of the Fisher information about
the measured parameter into a small number of collected
events [3-5]. Combined with the fact that the weak-values-
based approach can perform better than the standard
method in the presence of certain technical limitations,
such as beam jitter noise or detector saturation [3,4],
ultrasensitive optical beam displacement and deflection
measurements have been achieved using this technique,
see, e.g., Refs. [6-8]. For recent reviews of this and related
topics, see Refs. [9,10]. Here, we focus on the interfero-
metric weak value setup used in Ref. [7], which couples the
transverse beam position to the “which-path” counter-
propagating modes of a Sagnac interferometer. The post-
selection corresponds to measuring only the light emerging
from the “dark” port of the interferometer. The meter
change corresponds to a transverse beam deflection.

Unlike traditional deflection measurements that directly
focus the beam onto the detector, the weak value deflection
effect relies on wave interference. As such, we can consider
combining this effect with other interferometric techniques
that have been useful for precision measurement schemes,
such as in gravitational wave detectors. One such technique
is power recycling, initially proposed by Drever [11]. By
placing a partially transmitting mirror at the bright port of
an interferometer to form a resonant cavity, one is able to
more efficiently use the input laser power by increasing the
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total power inside the interferometer. In the context of these
weak-value-based experiments, the photons that would
have previously exited the interferometer through the bright
port now destructively interfere, effectively trapping them
inside the interferometer, so that, in the absence of loss, the
entire input beam eventually exits the (formerly) dark port
of the interferometer.

With the weak value deflection measurement inside the
cavity, the full beam experiences the amplified deflection,
which can then be detected with a position sensitive
detector, such as a split detector. Since the single-pass,
postselected, weak value measurement displays the same
SNR as the ideal focusing deflection technique [2—4], the
power recycling enhancement permits the amplification of
the SNR itself by the large weak value factor, thus
surpassing both techniques. We focus in this Letter on
the continuous wave recycling of power to increase the
precision of the weak value technique. A related pulsed
recycling scheme, using a Pockels cell to trap a pulse inside
the interferometer, was proposed in Ref. [12]. One impor-
tant difference between the two ideas is that the pulsed
scheme relies on the Pockels cell and polarization optics to
trap the pulse in the interferometer, whereas here it is the
destructive interference of the reflected field that causes all
the light to exit to the detector.

Weak value amplification.—We first briefly review the
interferometic weak value setup of Ref. [7] using a Sagnac
interferometer. A phase difference ¢» between the counter-
propagating modes of the interferometer may be controlled
with a Soleil-Babinet compensator (SBC) to break the
clockwise or counterclockwise symmetry. A piezodriven
deflecting mirror is placed at the symmetry point of the
interferometer to induce a small transverse momentum kick
k, the parameter we wish to precisely measure. This
parameter can be measured using a split detector placed
at the output dark port.

© 2015 American Physical Society
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FIG. 1 (color online). Schematics of weak-value-based metrol-
ogy with power recycling cavities. (a) Plane parallel cavity. A
partially reflecting mirror (M) forms an optical cavity in
combination with a Sagnac interferometer, causing all the light
to exit to the detector. The tunable phase difference between the
counterpropagating arms is controlled by a Soleil-Babinet com-
pensator (SBC). A piezodriven mirror (PM) imparts a small
deflection to the beam, which is measured at a split detector. A
spatial filter (SF) refreshes the beam profile on each pass.
(b) Confocal cavity. A symmetric confocal resonator is estab-
lished with the curved recycling mirror. Here, the 50:50 beam
splitter (BS) is tilted instead of the mirror (which is now at the
focus). A Dove prism (DP) inside the interferometer corrects for
the profile flip when the Gaussian beam passes through its focus.
The quarter wave plates (QWPs) together with the SBC ensure
that the polarization optics leads to the same displacement at the
detector on every pass.

We consider a continuous wave laser with a transverse
Gaussian profile Ey(x) = (N?/276%)"/* exp(—x?/46?) that
we have normalized to the average number of available
photons N per unit time. The split detector gives a signal as
the difference between the number of photons on the left
versus right side of the detector, S = Np — N, per unit
time. The signal of the split detector at the dark port is
linear in k for the interferometric weak value measurement
(assuming ko < ¢/2 <« 1) [7,12]

2 2k
<$z2vgNm7f, (1)

where Ny is the total number of photons that are
detected out of the initial beam. From a quantum mechani-
cal perspective, we note that the large factor of 2/¢
is related to the weak value of the which-path operator

W, given by (y,|Wlw)/(wylw;) = —icot(p/2) = =2i/¢.

Here, W = |O)(O| = |O)N(O| is defined with the two
orthogonal circulating states |O) and |0) of the Sagnac
interferometer, and |y;) and |y) are the pre- and post-
selected states of the interferometer, defined by the phase ¢
and the selection of the port to measure. The weak value
effectively amplifies the kick k for each collected photon.
The variance of this signal is limited by the detected shot
noise Ny, so the SNR R is given by

_ ), 2 ke
R:mva\/;\/Ndet = (2)

Continuous-wave power recycling.—To introduce
power recycling, we modify the previous setup of
Ref. [7] by adding a partially transmitting mirror, illustrated
in Fig. 1(a), to make the Sagnac interferometer a resonant
optical cavity. In the absence of the cavity, the detected
number of photons Ny, = pN is small when the post-
selection probability p =~ (¢/2)* of the dark port is also
small. The resulting factor of ,/p in Eq. (2) thus exactly
cancels the amplification of the large weak value factor, and
precisely recovers the SNR that one expects from a tradi-
tional beam deflection measurement with all the light [13],
but still with enhanced robustness to some types of
technical noise [3,4]. However, the addition of the cavity
will permit the entire input beam to exit the (formerly)
dark port and be detected with the amplified deflection. As
we will soon show, including the cavity ideally makes
Ngot = N, so the large weak value (2/¢) directly amplifies
the SNR itself in Eq. (2), giving a large prefactor to the
standard quantum limit scaling. We note this variation also
turns the probabilistic weak value method into a determin-
istic one with respect to the output port.

To see why such a resonant cavity will permit the entire
beam to be detected, consider an initial amplitude E that is
incident on a cavity formed by two partially transmitting
mirrors with transmission #; and ¢, and reflection r; =
/1 —t; and r, = /1 — 1, coefficients. For light inside the
cavity, each round trip adds a phase 8, which depends on
the geometry of the cavity and the wavelength of light,
giving a geometric series for the amplitude

By = t][l + rlrzeie + (rlrzeia)2 + .. ']EO
!

=——— —F,. 3
1 —rre? 0 (3)

The light reflected back towards the laser is similarly
geometric, with the amplitude E, being a superposition of
amplitudes from light directly reflected from the first mirror
and multiple reflections inside the cavity

2rye’
1—19] Ey. (4)

Er = |:—r1 +
1 —rire
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If & = 2zn, where n is any integer, and r; = r, = r, then
the reflected amplitude is exactly zero, so the power leaving
the cavity through the second mirror becomes equal to the
input laser power. This condition is known as impedance
matching [14]. In this case the light intensity inside the
cavity is amplified above the input laser intensity by a gain
factor

_ |Ecav|2 _ t2 _ 1 _ 1 (5)
TP -Rp AT

G

equivalent to the inverse transmission probability 7.

We will soon show that these general results may be
applied to our weak value amplification cavity formed from
one partially transmitting mirror and the partially trans-
mitting dark port of the interferometer. We effectively
replace the transmission 7 in Eq. (5) by the postselection
probability of exiting the interferometer, T — p =~ (¢/2)>.
Thus, the large power gain inside the inteferometer allows
for the small postselection probability to give the entire
input beam out of one port, and no light out of the other
port, boosting the SNR of Eq. (2) by 1/,/p.

Resource counting.—The relative advantages of one
technique to another should specify the resources given
as a constraint. We note that if the resource is taken to be the
number of detected photons, then there is already an
advantage in the single-pass weak value experiment over
the direct deflection experiment (not considering technical
noise sources) [7,13]. If instead the resource is the total
number of photons entering the interferometer, the power-
recycled proposal gives an advantage 1/,/p over the single
pass experiment for many cycles. Perhaps a fairer way of
counting resources is the number of times an interaction
takes place. In this proposal, the enhancement in sensitivity
is due to an effective power increase, but we stress that the
signal does not accumulate for multiple passes. The total
number of interactions with the unknown parameter is NM,
where N is the total photon number, and M is the number of
times a photon enters the interferometer. While M is a
stochastic variable in our system, on average it is 1/p,
giving N/p as the total number of interactions, whose
square root will be shown to determine R in Eq. (12).
Another interesting technique using multiple interactions
where the signal scales linearly with the number of cycles
while keeping the noise constant is a simple example of
signal recycling [15]. In this case recycled photons accu-
mulate additional momentum kicks on each traversal
thereby enhancing the signal. This separate technique
can be used together with power recycling as a comple-
mentary method, and has already been incorporated in this
kind of measurement via an optical lever by the Kasevich
group [8].

Recycling with flat mirrors.—The remaining require-
ment for the weak value technique to still work in the
presence of the cavity is for the transverse position profile

at the beam splitter to be preserved, so that the enhanced
deflection remains with each traversal through the inter-
ferometer. We now calculate the transverse profile for a
beam confined by flat cavity mirrors by adapting the
operator approach used in Ref. [12]. While all intensities
in this setup may be calculated from classical wave optics,
it is convenient to adopt a quantum state analysis. The flat
mirror approach is a reasonable approximation if the round-
trip distance of the cavity multiplied by the finesse is much
less than the Rayleigh length of the beam. Later, we will
discuss a more realistic cavity design that uses a curved
mirror to confine a Gaussian beam.

To determine the steady state beam profile at the
detector, we introduce the “system” state |y) spanned by
the orthogonal circulating modes |O) and |O) of the
Sagnac interferometer, and the “meter” state |@), which
represents the transverse profile of the beam, with the
position amplitude for a single photon given by (x|@,) =
E(x)/+/N. The total state in the interferometer is then the
tensor product |¥) = |y)|@o). In what follows 7 = 1.

The beam will experience two distinct effects inside the
interferometer that depend on the path. First, the tilted
mirror couples the system and meter by imparting a
momentum kick k to the transverse beam depending on
the path taken, which modifies the state with the unitary
operator Upy; = ¢**W, depending on the which-path oper-
ator. Second, the SBC produces a net phase shift ¢ between
the circulating modes, corresponding to the unitary oper-

ator Ugge = e"®W/2. To take into account small but
constant losses, we introduce the nonunitary operator
L=yT- yi, where y is the probability of loss per
traversal from all optical imperfections. Note that the “loss”
of the cavity to the detector via the beam splitter is treated
separately.

After entering the interferometer through the 50:50
beam splitter, the path state becomes an equal superposition
of circulating modes |y_.) = (1/+/2)(|O) + i|O)), which
is also the projection state for the bright port. The dark
port is correspondingly described by the orthogonal state
ly_) = (1/v2)(|O) = i|O)). Since Upy and Ugpc are the
only nontrivial actions on the system Hilbert space, it is
convenient to combine their effects with the projection
onto the output ports of the interferometer, which produces
measurement operators M ; = (| Upy Uspc|y..) given by
M. =cos(p/2— k&),  M_=isin(¢/2—k&), (6)
where % is the position operator, so M, are diagonal in
the position basis. Here, we have used (y,|W"|y.) =
(1£(=1))/2.

Zeno refreshing.—After many traversals, transverse
beam degradation tends to diminish the signal as discussed
in Ref. [12]. One strategy to solve this problem is to
introduce a Gaussian spatial filter as shown in Fig. 1 [16].

170801-3
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Although a spatial filter is not essential for a successful
power recycling scheme, we treat it here because it offers a
more straightforward analysis compared to other arrange-
ments. The filter acts as a projection back onto the initial
state, which can be implemented with an additional
projection operator IT = |¢,) (| so that the (normalized)
state after the filter is again given by |¢,). The overlap
between the one-pass transverse state and the initial trans-
verse state is close to 1, indicating that for the vast majority
of the time a photon will pass unimpeded through the filter.
This may be interpreted as a Zeno effect, refreshing the
transverse profile, which is ideally lossless in the small k
limit as we will now see. The probability of exiting the
beam splitter toward the recycling mirror is given by

P, = |1 ]go)? = (1/2)[1 + cos dexp(~2%a?)]. (7)
leaving the prefilter normalized state as |¢) =
M |py)/+/P. The probability of surviving the filter is
given by Pz = [{¢ol¢/)|* and

P =172 ([ aseio) costr2- k)

cos’(¢/2)
* sinh(k%6?) + cos?(¢/2)e K7
~1—(¢/2)*k*c* —k*6* /2 + - - -, (8)

where the last approximation is taken in the weak value
parameter range ko < ¢p/2 < 1. We note that the exact
expression for P, correctly equals 1 when k = 0 for any
value of ¢, while the filter loss is k>6”¢* /4 to leading order.

This small amount of loss per cycle can be incorporated
into the loss from the imperfect optics (e.g., unwanted
reflection and absorption events in the cavity) as
y = v + k*c*¢? /4, which we assume to be small compared
to 1. With the filter included, the transverse beam profile is
refreshed every cycle, making the calculations of the many-
cycle case straightforward. The steady state amplitude
exiting the detection port is given by the sum of amplitudes
from all traversal numbers

o) = T= 78S (/T = 7)P2) o)
n=0
ity T=sin(¢/2 — k)
=R ) ©)

where P, ~cos*(¢/2) is the probability of exiting the
recycling mirror port (7). Similarly, the steady state
amplitude of light reflected back towards the laser is

_ [, 2\/T=ycos(¢/2)
o) = |-+ REEE B ). 10

which yields an impedance matching condition of

r = /(1 —y)P.. Notice that this choice stops any light
leaking back through the recycling mirror in the steady

state, regardless of the losses involved (as long as the beam
remains phase coherent, and its spectral and spatial profiles
correctly realign back at the input confining mirror). In the
limit of small loss, this corresponds to setting the mirror
transmission amplitude 7 = ¢/2.

Using an initial Gaussian profile as originally consid-
ered, the average split detector signal is still given by
Eq. (1), but now the total number of detected photons is

2w

giving all of them minus losses. Therefore, the detector has

a SNR of
R 4\[¢“’“’ = (12)

From the spatial filter, the minimum loss for ideal optics is
y & k*6*¢* /4, which produces an overall (negligible) loss
factor of (1 —k?¢?/2) in the SNR. As predicted after
Eq. (2), the SNR has been increased by the weak value
factor of (2/¢) = 1/,/p from the SNR of the single-pass
weak value setup (and thus the traditional deflection setup)
when the loss y < ¢?/4 is small.

Power recycling with curved mirrors.—While the recy-
cling analysis with flat mirrors is straightforward, this
cavity geometry is on the borderline between stable and
unstable [17]. In practice, the beam will be a diffracting
Gaussian beam with a curved phase front rather than the
collimated beam treated above. To confine such a Gaussian
beam in a stable configuration, the radius of curvature of
the recycling mirror must match the radius of curvature
of the phase fronts to ensure proper phase cancellation at
the mirror. This geometry is sketched in Fig. 1(b). The
remaining flat mirrors in our setup have no effect on the
confinement properties. The resonant cavity is character-
ized by its finesse, the typical number of bounces before the
beam decays. In order to maximize the gains from the
recycling procedure, the finesse should exceed the inverse
probability to exit the interferometer to the detector. Placing
the beam focus at the far mirror ensures that the symmetry
of the interferometer paths is not disturbed by the changing
beam waist, enabling proper interference of the clockwise
and counterclockwise propagating curved phase fronts at
the beam splitter. This geometry defines a symmetric
confocal cavity, which has well-established properties.
The confocal cavity lies at the other stability extreme of
the plane parallel geometry [17].

The physics of this cavity is similar to that of the
collimated analysis, with a few important differences.
The beam will achieve its minimum waist o at the far
mirror and its maximum waist ¢ at the recycling mirror,

Neo =N [~ al(alo) ~N(1
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where it should match the spatial and spectral profiles of the
input beam. If the coordinate z along the optical axis is
measured from the minimum waist at the symmetry point,
and the maximum cavity length between that point and
recycling mirror is £, then the beam width inside the cavity

is given by 6(z) = 6/ 1 + z2/£?, where ¢ is also equal to
the Rayleigh range and (¢) = \/26,) = o is the input beam
waist. Putting the transverse mirror momentum kick & at the
focus of the cavity does not yield a sensitive response, so
we put the momentum kick instead on the beam splitter, as
was done in the experiments of Ref. [4]. The transmitted
beams acquire no momentum kick, while the reflected
beams acquire a momentum kick k. The presence of a focus
in the cavity gives two new effects. The first is that a Gouy
phase appears from the focus, giving an additional phase
factor of z in both beams [17]. The second more important
effect is that passing through the focus flips the tilt of the
phase front, so the effective transverse momentum kick
from the beam splitter is inverted when the expanding beam
returns to the beam splitter, k — —k. If left uncorrected, this
momentum kick is undone by the additional X momentum
kick from the second reflection to the detector. We can
compensate for this effect by adding a Dove prism inside
the interferometer, which provides a transverse parity flip to
restore the previous phase front, recovering weak value
physics similar to the collimated case. The only significant
difference from the previous analysis concerns the chang-
ing width of the beam &(z). The choice of cavity geometry
will set the width ¢ in Eq. (12).

Conclusion.—By including a power recycling mirror in
a continuous wave interferometric weak value amplifica-
tion setup, we are able to maintain the large pointer shift
associated with previous weak value amplification experi-
ments while acquiring all of the input light in principle. Our
main result is that the SNR (or, equivalently, the Fisher
information about the desired parameter) is boosted by the
weak value factor, which can be made large in principle,
limited only by the fidelity of the optics and the finesse of
the cavity. We have given two different cavity geometries to
realize this proposal, but other stable geometries giving
similar physics also exist.

In this work, we have focused on the interferometric
implementation of the optical weak value effect to propose
the use of the power recycling technique. However, the
same basic idea may be applied to other experimental
realizations of the same, such as the polarization-based
version [6], where the postselection is accomplished with a
polarizing beam splitter, and the other output beam is
reinjected into the experiment.

Power recycling is only one of the techniques used in
precision interferometric measurements. There are several
others that may be able to be combined with our setup as
well. As for further improvements in sensitivity, we have

already discussed the possibility of recycling the signal.
Future work may focus on the combination of this
technique and quantum light metrological approaches such
as using squeezed and entangled states [18,19].
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