212 research outputs found

    Measurement and interpretation of same-sign W boson pair production in association with two jets in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents the measurement of fducial and diferential cross sections for both the inclusive and electroweak production of a same-sign W-boson pair in association with two jets (W±W±jj) using 139 fb−1 of proton-proton collision data recorded at a centre-of-mass energy of √s = 13 TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed by selecting two same-charge leptons, electron or muon, and at least two jets with large invariant mass and a large rapidity diference. The measured fducial cross sections for electroweak and inclusive W±W±jj production are 2.92 ± 0.22 (stat.) ± 0.19 (syst.)fb and 3.38±0.22 (stat.)±0.19 (syst.)fb, respectively, in agreement with Standard Model predictions. The measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confdence level intervals on dimension-8 operators. A search for doubly charged Higgs bosons H±± that are produced in vector-boson fusion processes and decay into a same-sign W boson pair is performed. The largest deviation from the Standard Model occurs for an H±± mass near 450 GeV, with a global signifcance of 2.5 standard deviations

    Demonstration of Ignition Radiation Temperatures in Indirect-Drive Inertial Confinement Fusion Hohlraums

    Full text link

    Search for dark photons in rare Z boson decays with the ATLAS detector

    Get PDF
    A search for events with a dark photon produced in association with a dark Higgs boson via rare decays of the standard model Z boson is presented, using 139     fb − 1 of √ s = 13     TeV proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider. The dark boson decays into a pair of dark photons, and at least two of the three dark photons must each decay into a pair of electrons or muons, resulting in at least two same-flavor opposite-charge lepton pairs in the final state. The data are found to be consistent with the background prediction, and upper limits are set on the dark photon’s coupling to the dark Higgs boson times the kinetic mixing between the standard model photon and the dark photon, α D ϵ 2 , in the dark photon mass range of [5, 40] GeV except for the Υ mass window [8.8, 11.1] GeV. This search explores new parameter space not previously excluded by other experiments

    Combined measurement of the Higgs boson mass from the H → γγ and H → ZZ∗ → 4ℓ decay channels with the ATLAS detector using √s = 7, 8, and 13 TeV pp collision data

    Get PDF
    A measurement of the mass of the Higgs boson combining the H → Z Z ∗ → 4 ℓ and H → γ γ decay channels is presented. The result is based on 140     fb − 1 of proton-proton collision data collected by the ATLAS detector during LHC run 2 at a center-of-mass energy of 13 TeV combined with the run 1 ATLAS mass measurement, performed at center-of-mass energies of 7 and 8 TeV, yielding a Higgs boson mass of 125.11 ± 0.09 ( stat ) ± 0.06 ( syst ) = 125.11 ± 0.11     GeV . This corresponds to a 0.09% precision achieved on this fundamental parameter of the Standard Model of particle physics

    Neural-network accelerated coupled core-pedestal simulations with self-consistent transport of impurities and compatible with ITER IMAS

    No full text
    An integrated modeling workflow capable of finding the steady-state plasma solution with self-consistent core transport, pedestal structure, current profile, and plasma equilibrium physics has been developed and tested against a DIII-D discharge. Key features of the achieved core-pedestal coupled workflow are its ability to account for the transport of impurities in the plasma self-consistently, as well as its use of machine learning accelerated models for the pedestal structure and for the turbulent transport physics. Notably, the coupled workflow is implemented within the One Modeling Framework for Integrated Tasks (OMFIT) framework, and makes use of the ITER integrated modeling and analysis suite data structure for exchanging data among the physics codes that are involved in the simulations. Such technical advance has been facilitated by the development of a new numerical library named ordered multidimensional arrays structure.</p

    Neural-network accelerated coupled core-pedestal simulations with self-consistent transport of impurities and compatible with ITER IMAS

    No full text
    An integrated modeling workflow capable of finding the steady-state plasma solution with self-consistent core transport, pedestal structure, current profile, and plasma equilibrium physics has been developed and tested against a DIII-D discharge. Key features of the achieved core-pedestal coupled workflow are its ability to account for the transport of impurities in the plasma self-consistently, as well as its use of machine learning accelerated models for the pedestal structure and for the turbulent transport physics. Notably, the coupled workflow is implemented within the One Modeling Framework for Integrated Tasks (OMFIT) framework, and makes use of the ITER integrated modeling and analysis suite data structure for exchanging data among the physics codes that are involved in the simulations. Such technical advance has been facilitated by the development of a new numerical library named ordered multidimensional arrays structure

    Neural-network accelerated coupled core-pedestal simulations with self-consistent transport of impurities and compatible with ITER IMAS

    Get PDF
    An integrated modeling workflow capable of finding the steady-state plasma solution with self-consistent core transport, pedestal structure, current profile, and plasma equilibrium physics has been developed and tested against a DIII-D discharge. Key features of the achieved core-pedestal coupled workflow are its ability to account for the transport of impurities in the plasma self-consistently, as well as its use of machine learning accelerated models for the pedestal structure and for the turbulent transport physics. Notably, the coupled workflow is implemented within the One Modeling Framework for Integrated Tasks (OMFIT) framework, and makes use of the ITER integrated modeling and analysis suite data structure for exchanging data among the physics codes that are involved in the simulations. Such technical advance has been facilitated by the development of a new numerical library named ordered multidimensional arrays structure
    corecore