18,408 research outputs found

    Comparison of FDMA and CDMA for second generation land-mobile satellite communications

    Get PDF
    Code Division Multiple Access (CDMA) and Frequency Division Multiple Access (FDMA) (both analog and digital) systems capacities are compared on the basis of identical link availabilities and physical propagation models. Parameters are optimized for a bandwidth limited, multibeam environment. For CDMA, the benefits of voice activated carriers, antenna discrimination, polarization reuse, return link power control and multipath suppression are included in the analysis. For FDMA, the advantages of bandwidth efficient modulation/coding combinations, voice activated carriers, polarization reuse, beam placement, and frequency staggering were taken into account

    The approach to criticality in sandpiles

    Get PDF
    A popular theory of self-organized criticality relates the critical behavior of driven dissipative systems to that of systems with conservation. In particular, this theory predicts that the stationary density of the abelian sandpile model should be equal to the threshold density of the corresponding fixed-energy sandpile. This "density conjecture" has been proved for the underlying graph Z. We show (by simulation or by proof) that the density conjecture is false when the underlying graph is any of Z^2, the complete graph K_n, the Cayley tree, the ladder graph, the bracelet graph, or the flower graph. Driven dissipative sandpiles continue to evolve even after a constant fraction of the sand has been lost at the sink. These results cast doubt on the validity of using fixed-energy sandpiles to explore the critical behavior of the abelian sandpile model at stationarity.Comment: 30 pages, 8 figures, long version of arXiv:0912.320

    Enduring Extremes? Polar Vortex, Drought, and Climate Change Beliefs

    Get PDF
    This is the author accepted manuscript. The final version is available from Taylor & Francis via the DOI in this recordSome extreme weather events may be more likely to affect climate change beliefs than others, in part because schema individuals possess for different events could vary in encouraging such links. Using a representative sample of U.S. adults and geocoded National Weather Service data, we examine how a range of extreme weather event categories relate to climate change beliefs, and the degree to which individuals’ self-reported experiences are shaped by their political views across event types. For tornado, hurricane, and flood events, we find no link with beliefs. For polar vortex and drought events, we find that although self-reported experience is linked with climate beliefs, reporting of these experiences is influenced by political identity and partisan news exposure. These findings underscore a limited role for extreme weather experiences in climate beliefs, and show that events more open to interpretation, such as droughts and polar vortex disturbances, are most likely to be seen through a partisan lens.This work was supported by H2020 European Research Council [grant number 682758]

    The Use of CFSE-like Dyes for Measuring Lymphocyte Proliferation : Experimental Considerations and Biological Variables

    No full text
    The measurement of CFSE dilution by flow cytometry is a powerful experimental tool to measure lymphocyte proliferation. CFSE fluorescence precisely halves after each cell division in a highly predictable manner and is thus highly amenable to mathematical modelling. However, there are several biological and experimental conditions that can affect the quality of the proliferation data generated, which may be important to consider when modelling dye dilution data sets. Here we overview several of these variables including the type of fluorescent dye used to monitor cell division, dye labelling methodology, lymphocyte subset differences, in vitro versus in vivo experimental assays, cell autofluorescence, and dye transfer between cells.This work was supported by a Project Grant to BQ and CP and a Program Grant to CP from the National Health and Medical Research Council (NHMRC) of Australia

    Renormalized energy concentration in random matrices

    Get PDF
    We define a "renormalized energy" as an explicit functional on arbitrary point configurations of constant average density in the plane and on the real line. The definition is inspired by ideas of [SS1,SS3]. Roughly speaking, it is obtained by subtracting two leading terms from the Coulomb potential on a growing number of charges. The functional is expected to be a good measure of disorder of a configuration of points. We give certain formulas for its expectation for general stationary random point processes. For the random matrix β\beta-sine processes on the real line (beta=1,2,4), and Ginibre point process and zeros of Gaussian analytic functions process in the plane, we compute the expectation explicitly. Moreover, we prove that for these processes the variance of the renormalized energy vanishes, which shows concentration near the expected value. We also prove that the beta=2 sine process minimizes the renormalized energy in the class of determinantal point processes with translation invariant correlation kernels.Comment: last version, to appear in Communications in Mathematical Physic

    Raman Response in Doped Antiferromagnets

    Full text link
    The resonant part of the B1gB_{1g} electronic Raman scattering response is calculated within the tJt-J model on a planar lattice as a function of temperature and hole doping, using a finite-temperature diagonalization method for small systems. Results, directly applicable to experiments on cuprates, reveal on doping a very pronounced increase of the width of the two-magnon Raman peak, accompanied by a decrease of the total intensity. At the same time the peak position does not shift substantially in the underdoped regime.Comment: 11 pages revtex, 3 postscript figures. Minor corrections and changes from previous version, to be published in Phys. Rev.

    Raman Scattering and Anomalous Current Algebra: Observation of Chiral Bound State in Mott Insulators

    Full text link
    Recent experiments on inelastic light scattering in a number of insulating cuprates [1] revealed a new excitation appearing in the case of crossed polarizations just below the optical absorption threshold. This observation suggests that there exists a local exciton-like state with an odd parity with respect to a spatial reflection. We present the theory of high energy large shift Raman scattering in Mott insulators and interpret the experiment [1] as an evidence of a chiral bound state of a hole and a doubly occupied site with a topological magnetic excitation. A formation of these composites is a crucial feature of various topological mechanisms of superconductivity. We show that inelastic light scattering provides an instrument for direct measurements of a local chirality and anomalous terms in the electronic current algebra.Comment: 18 pages, TeX, C Version 3.
    corecore