63 research outputs found

    Expression and visualization of Green Fluorescent Protein (GFP) in Neurospora crassa

    Get PDF
    We report the first successful imaging of GFP expression in Neurospora crassa. GFP was expressed under the control of the heterologous ToxA promoter from Pyrenophora tritici-repentis in transformants carrying multiple or single copies of the GFP construct. GFP was also detected in ascospores but not during earlier stages of the sexual cycle

    Appunti sul movimento antifascista sloveno della Venezia Giulia

    Get PDF
    <div><p>The class <em>Dothideomycetes</em> is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The <em>Dothideomycetes</em> most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core) genes. Gene order appears to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several <em>Dothideomycetes</em> contain one or more gene-poor, transposable element (TE)-rich putatively dispensable chromosomes of unknown function. The 18 <em>Dothideomycetes</em> offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the <em>Dothideomycetes</em>, the <em>Capnodiales</em> and <em>Pleosporales</em>, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP) mutations. A syntenic block of genes, including oxidoreductases, is conserved in most <em>Dothideomycetes</em> and upregulated during infection in <em>L. maculans</em>, suggesting a possible function in response to oxidative stress.</p> </div

    Comparative genome structure, secondary metabolite, and effector coding capacity across Cochliobolus pathogens.

    Get PDF
    The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five percent of each genome differs between strains of the same species, while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25× higher than those between inbred lines and 50× lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP-encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence

    Localization of Ptr ToxA Produced by Pyrenophora tritici-repentis Reveals Protein Import into Wheat Mesophyll Cells

    No full text
    The plant pathogenic fungus Pyrenophora tritici-repentis secretes host-selective toxins (HSTs) that function as pathogenicity factors. Unlike most HSTs that are products of enzymatic pathways, at least two toxins produced by P. tritici-repentis are proteins and, thus, products of single genes. Sensitivity to these toxins in the host is conferred by a single gene for each toxin. To study the site of action of Ptr ToxA (ToxA), toxin-sensitive and -insensitive wheat (Triticum aestivum) cultivars were treated with ToxA followed by proteinase K. ToxA was resistant to protease, but only in sensitive leaves, suggesting that ToxA is either protected from the protease by association with a receptor or internalized. Immunolocalization and green fluorescent protein tagged ToxA localization demonstrate that ToxA is internalized in sensitive wheat cultivars only. Once internalized, ToxA localizes to cytoplasmic compartments and to chloroplasts. Intracellular expression of ToxA by biolistic bombardment into both toxin-sensitive and -insensitive cells results in cell death, suggesting that the ToxA internal site of action is present in both cell types. However, because ToxA is internalized only in sensitive cultivars, toxin sensitivity, and therefore the ToxA sensitivity gene, are most likely related to protein import. The results of this study show that the ToxA protein is capable of crossing the plant plasma membrane from the apoplastic space to the interior of the plant cell in the absence of a pathogen
    corecore