23,487 research outputs found

    Low-Cost Motility Tracking System (LOCOMOTIS) for time-lapse microscopy applications and cell visualisation

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Direct visualisation of cells for the purpose of studying their motility has typically required expensive microscopy equipment. However, recent advances in digital sensors mean that it is now possible to image cells for a fraction of the price of a standard microscope. Along with low-cost imaging there has also been a large increase in the availability of high quality, open-source analysis programs. In this study we describe the development and performance of an expandable cell motility system employing inexpensive, commercially available digital USB microscopes to image various cell types using time-lapse and perform tracking assays in proof-of-concept experiments. With this system we were able to measure and record three separate assays simultaneously on one personal computer using identical microscopes, and obtained tracking results comparable in quality to those from other studies that used standard, more expensive, equipment. The microscopes used in our system were capable of a maximum magnification of 413.6x. Although resolution was lower than that of a standard inverted microscope we found this difference to be indistinguishable at the magnification chosen for cell tracking experiments (206.8x). In preliminary cell culture experiments using our system, velocities (mean mm/min ± SE) of 0.81±0.01 (Biomphalaria glabrata hemocytes on uncoated plates), 1.17±0.004 (MDA-MB-231 breast cancer cells), 1.24±0.006 (SC5 mouse Sertoli cells) and 2.21±0.01 (B. glabrata hemocytes on Poly-L-Lysine coated plates), were measured and are consistent with previous reports. We believe that this system, coupled with open-source analysis software, demonstrates that higher throughput time-lapse imaging of cells for the purpose of studying motility can be an affordable option for all researchers. © 2014 Lynch et al

    Three-axis adjustable loading structure

    Get PDF
    A three axis adjustable loading structure for testing the movable surfaces of aircraft by applying pressure, is described. The device has three electric drives where the wall angle, horizontal position, and vertical position of the test device can be rapidly and accurately positioned

    Aerosol studies in mid-latitude coastal environments in Australia

    Get PDF
    The results of the evaluation of several inversion procedures that were used to select one which provides the most accurate atmospheric extinction profiles for small aerosol extinction coefficients (that often predominate in the maritime airmass) are presented. Height profiles of atmospheric extinction calculated by a two component atmospheric solution to the LIDAR equation will be compared with corresponding in-situ extinction profiles based on the size distribution profiles obtained in Western Australia. Values of the aerosol backscatter to extinction ratio obtained from multi-angle LIDAR measurements will be used in this solution

    Magnetic-Island Contraction and Particle Acceleration in Simulated Eruptive Solar Flares

    Full text link
    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission in solar flares is not well understood. Drake et al. (2006) proposed a mechanism for accelerating electrons in contracting magnetic islands formed by kinetic reconnection in multi-layered current sheets. We apply these ideas to sunward-moving flux ropes (2.5D magnetic islands) formed during fast reconnection in a simulated eruptive flare. A simple analytic model is used to calculate the energy gain of particles orbiting the field lines of the contracting magnetic islands in our ultrahigh-resolution 2.5D numerical simulation. We find that the estimated energy gains in a single island range up to a factor of five. This is higher than that found by Drake et al. for islands in the terrestrial magnetosphere and at the heliopause, due to strong plasma compression that occurs at the flare current sheet. In order to increase their energy by two orders of magnitude and plausibly account for the observed high-energy flare emission, the electrons must visit multiple contracting islands. This mechanism should produce sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each magnetohydrodynamic-scale island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare current sheet is a promising candidate for electron acceleration in solar eruptions.Comment: Accepted for publication in The Astrophysical Journal (2016

    Extracellular Phosphodiesterase from the Growth Medium of the Myxomycete Physarum flavicomum

    Get PDF
    The plasmodium of the myxomycete Physarum flavicomum secretes cyclic AMP phosphodiesterase into the medium. The extracellular enzyme had a pH optimum between 7 and 8 and a Km of about 500 μM cyclic AMP and was inhibited by theophylline, caffeine and 3-isobutyl-l-methyxanthine (MIX). A marked decrease of enzyme activity was noted in the presence of EDTA, suggesting the requirement of Mg+ + by the enzyme. Addition of Mg+ + and Ca + + stimulated the enzyme while Zn+ + , Co+ + , Pb+ + , Mn+ + , Fe + + + , Ni+ + , and Cu + + all inhibited phosphodiesterase activity. An interesting feature of this extracellular phosphodiesterase was its ability to retain full catalytic activity after prolonged exposure to elevated temperature

    Low-energy interband absorption in bcc Fe and hcp Co

    Get PDF
    We have examined the electronic structure of bcc Fe and single-crystal hcp Co by using optical absorptivity and thermoreflectance techniques for 0.2≤hν≤5 eV. The optical conductivities σ were calculated by Kramers-Kronig analyses. A prominent structure was observed in σ for Fe at 2.37 eV and a shoulder was observed near 0.8 eV; the latter structure was the dominant feature in the thermoreflectance spectrum. These were discussed in terms of minority-spin band interband absorption and spin-flip interband transitions. The anisotropic optical conductivities of hcp Co were discussed in terms of recent energy-band calculations

    Extended radio emission associated with a breakout eruption from the back side of the Sun

    Get PDF
    Context. Coronal mass ejections (CMEs) on the Sun are the largest explosions in the Solar System that can drive powerful plasma shocks. The eruptions, shocks, and other processes associated to CMEs are efficient particle accelerators and the accelerated electrons in particular can produce radio bursts through the plasma emission mechanism. Aims. Coronal mass ejections and associated radio bursts have been well studied in cases where the CME originates close to the solar limb or within the frontside disc. Here, we study the radio emission associated with a CME eruption on the back side of the Sun on 22 July 2012. Methods. Using radio imaging from the Nancay Radioheliograph, spectroscopic data from the Nancay Decametric Array, and extreme-ultraviolet observations from the Solar Dynamics Observatory and Solar Terrestrial Relations Observatory spacecraft, we determine the nature of the observed radio emission as well as the location and propagation of the CME. Results. We show that the observed low-intensity radio emission corresponds to a type II radio burst or a short-duration type IV radio burst associated with a CME eruption due to breakout reconnection on the back side of the Sun, as suggested by the pre-eruptive magnetic field configuration. The radio emission consists of a large, extended structure, initially located ahead of the CME, that corresponds to various electron acceleration locations. Conclusions. The observations presented here are consistent with the breakout model of CME eruptions. The extended radio emission coincides with the location of the current sheet and quasi-separatrix boundary of the CME flux and the overlying helmet streamer and also with that of a large shock expected to form ahead of the CME in this configuration.Peer reviewe

    Results of 1/4-Scale Experiments. Vapor Simulant And Liquid Jet A Tests

    Get PDF
    A quarter-scale engineering model of the center wing tank (CWT) of a 747-100 was constructed. This engineering model replicated the compartmentalization, passageways, and venting to the atmosphere. The model was designed to scale the fluid dynamical and combustion aspects of the explosion, not the structural failure of the beams or spars. The effect of structural failure on combustion was examined by using model beams and spars with deliberately engineered weak connections to the main tank structure. The model was filled with a simulant fuel (a mixture of propane and hydrogen) and ignited with a hot wire. The simulant fuel was chosen on the basis of laboratory testing to model the combustion characteristics (pressure rise and flame speed) of Jet A vapor created by a Jet A liquid layer at 50C at an altitude of 13.8 kft. A series of experiments was carried out in this model in order to: (a) investigate combustion in a CWT geometry; and (b) provide guidance to the TWA 800 crash investigation. The results of the experiments were observed with high-speed film, video, and still cameras, fast and slow pressure sensors, thermocouples, photodetectors, and motion sensors. A special pseudo-schlieren system was used to visualize flame propagation within the tank. This report describes the test program, facility, instrumentation, the first 30 experiments, comparisons between experiments, and performance of the instrumentation; then examines the significance of these results to the TWA 800 crash investigation. The key results of this study are: Flame Motion: The motion of flame was dominated by the effects of turbulence created by jetting through the passageways and vent stringers. A very rapid combustion event (lasting 10 to 20 ms) occurred once the flame traveled outside of the ignition bay and interacted with the turbulent flow. Most of the gas within the tank was burned during this rapid event. Compartments: The combustion time decreased with an increasing number of compartments (bays) within the tank. With six bays, combustion took only 100 to 150 ms to be completed from the time of ignition until the end of the rapid combustion phase. The total combustion event was three to four times shorter with compartments than without. Venting: Venting to the outside of the tank through the model vent stringers had a negligible effect on the combustion progress or on the peak pressure reached at the end of the burn. Ignition Location: Variation of the ignition location produced distinctive pressure loads on the structural components. Liquid Fuel: Lofting of a cold liquid fuel layer was produced by the combustion-induced gas motion. Although this spray of liquid eventually ignited and burned, it did not contribute to the pressure loading. Structural Failure: Structural failure resulted in flame acceleration, decreasing the overall combustion time. TWA 800 Investigation: The pressure loads were sufficiently high, up to 4 bar, and the combustion events were sufficiently short, that the forward portion (spanwise beam 3, front spar) of the CWT structure would fail as a direct consequence of the explosion. A combination of pressure loads was produced in some tests consistent with the TWA 800 wreckage. Replica tests, structural modeling, and sensitivity studies on fuel concentration are needed before any conclusions can be drawn about probable ignition locations. Cargo Bay: Tests with a simplified model of a half-full cargo bay indicated that repeated pressure waves with an amplitude of 1 bar or less are produced when an explosion scenario similar to TWA 800 is tested. Future Testing: Future studies should include replica tests, tests with Jet A vapor and warm liquid Jet A layers, and sensitivity tests to examine ignition location, fuel concentration, and vent area perturbations. Summary: Explosion tests in a 747-100 CWT model reveal that a very complex pattern of combustion occurs due the interaction of the flame and the flow-generated turbulence. A wide range of structural load patterns occur, depending on the location of the ignition source. Some of these load patterns are consistent with damage believed to be associated with the initial explosion event in TWA 800. Sensitivity of the loading to the ignition location indicates that narrowing down the ignition location in TWA 800 may be possible. However, the complexity of the combustion and structural failure processes in the actual center wing tank mandates extremely careful consideration of the uncertainties that enter into this process
    corecore