601 research outputs found
Mistaken identity may explain why male sea snakes (Aipysurus laevis, Elapidae, Hydrophiinae) âattackâ scuba divers
Scuba-divers on tropical coral-reefs often report unprovoked âattacksâ by highly venomous Olive sea snakes (Aipysurus laevis). Snakes swim directly towards divers, sometimes wrapping coils around the diverâs limbs and biting. Based on a focal animal observation study of free-ranging Olive sea snakes in the southern Great Barrier Reef, we suggest that these âattacksâ are misdirected courtship responses. Approaches to divers were most common during the breeding season (winter) and were by males rather than by female snakes. Males also made repeated approaches, spent more time with the diver, and exhibited behaviours (such as coiling around a limb) also seen during courtship. Agitated rapid approaches by males, easily interpreted as âattacksâ, often occurred after a courting male lost contact with a female he was pursuing, after interactions between rival males, or when a diver tried to flee from a male. These patterns suggest that âattacksâ by sea snakes on humans result from mistaken identity during sexual interactions. Rapid approaches by females occurred when they were being chased by males. Divers that flee from snakes may inadvertently mimic the responses of female snakes to courtship, encouraging males to give chase. To prevent escalation of encounters, divers should keep still and avoid retaliation
A systematic review on the diagnosis of pediatric bacterial pneumonia: When gold is bronze
Background: In developing countries, pneumonia is one of the leading causes of death in children under five years of age and hence timely and accurate diagnosis is critical. In North America, pneumonia is also a common source of childhood morbidity and occasionally mortality. Clinicians traditionally have used the chest radiograph as the gold standard in the diagnosis of pneumonia, but they are becoming increasingly aware that it is not ideal. Numerous studies have shown that chest radiography findings lack precision in defining the etiology of childhood pneumonia. There is no single test that reliably distinguishes bacterial from non-bacterial causes. These factors have resulted in clinicians historically using a combination of physical signs and chest radiographs as a \u27gold standard\u27, though this combination of tests has been shown to be imperfect for diagnosis and assigning treatment. The objectives of this systematic review are to: 1) identify and categorize studies that have used single or multiple tests as a gold standard for assessing accuracy of other tests, and 2) given the \u27gold standard\u27 used, determine the accuracy of these other tests for diagnosing childhood bacterial pneumonia. Methods and Findings: Search strategies were developed using a combination of subject headings and keywords adapted for 18 electronic bibliographic databases from inception to May 2008. Published studies were included if they: 1) included children one month to 18 years of age, 2) provided sufficient data regarding diagnostic accuracy to construct a 2Ă2 table, and 3) assessed the accuracy of one or more index tests as compared with other test(s) used as a \u27gold standard\u27. The literature search revealed 5,989 references of which 256 were screened for inclusion, resulting in 25 studies that satisfied all inclusion criteria. The studies examined a range of bacterium types and assessed the accuracy of several combinations of diagnostic tests. Eleven different gold standards were studied in the 25 included studies. Criterion validity was calculated for fourteen different index tests using eleven different gold standards. The most common gold standard utilized was blood culture tests used in six studies. Fourteen different tests were measured as index tests. PCT was the most common measured in five studies each with a different gold standard. Conclusions: We have found that studies assessing the diagnostic accuracy of clinical, radiological, and laboratory tests for bacterial childhood pneumonia have used a heterogeneous group of gold standards, and found, at least in part because of this, that index tests have widely different accuracies. These findings highlight the need for identifying a widely accepted gold standard for diagnosis of bacterial pneumonia in children. © 2010 Lynch et al
IMOS national reference stations: A continental-wide physical, chemical and biological coastal observing system
Sustained observations allow for the tracking of change in oceanography and ecosystems, however, these are rare, particularly for the Southern Hemisphere. To address this in part, the Australian Integrated Marine Observing System (IMOS) implemented a network of nine National Reference Stations (NRS). The network builds on one long-term location, where monthly water sampling has been sustained since the 1940s and two others that commenced in the 1950s. In-situ continuously moored sensors and an enhanced monthly water sampling regime now collect more than 50 data streams. Building on sampling for temperature, salinity and nutrients, the network now observes dissolved oxygen, carbon, turbidity, currents, chlorophyll a and both phytoplankton and zooplankton. Additional parameters for studies of ocean acidification and bio-optics are collected at a sub-set of sites and all data is made freely and publically available. Our preliminary results demonstrate increased utility to observe extreme events, such as marine heat waves and coastal flooding; rare events, such as plankton blooms; and have, for the first time, allowed for consistent continental scale sampling and analysis of coastal zooplankton and phytoplankton communities. Independent water sampling allows for cross validation of the deployed sensors for quality control of data that now continuously tracks daily, seasonal and annual variation. The NRS will provide multi-decadal time series, against which more spatially replicated short-term studies can be referenced, models and remote sensing products validated, and improvements made to our understanding of how large-scale, long-term change and variability in the global ocean are affecting Australia's coastal seas and ecosystems. The NRS network provides an example of how a continental scaled observing systems can be developed to collect observations that integrate across physics, chemistry and biology
Income inequality and alcohol attributable harm in Australia
<p>Abstract</p> <p>Background</p> <p>There is little research on the relationship between key socioeconomic variables and alcohol related harms in Australia. The aim of this research was to examine the relationship between income inequality and the rates of alcohol-attributable hospitalisation and death at a local-area level in Australia.</p> <p>Method</p> <p>We conducted a cross sectional ecological analysis at a Local Government Area (LGA) level of associations between data on alcohol caused harms and income inequality data after adjusting for socioeconomic disadvantage and remoteness of LGAs.</p> <p>The main outcome measures used were matched rate ratios for four measures of alcohol caused harm; acute (primarily related to the short term consequences of drinking) and chronic (primarily related to the long term consequences of drinking) alcohol-attributable hospitalisation and acute and chronic alcohol-attributable death. Matching was undertaken using control conditions (non-alcohol-attributable) at an LGA level.</p> <p>Results</p> <p>A total of 885 alcohol-attributable deaths and 19467 alcohol-attributable hospitalisations across all LGAs were available for analysis. After weighting by the total number of cases in each LGA, the matched rate ratios of acute and chronic alcohol-attributable hospitalisation and chronic alcohol-attributable death were associated with the squared centred Gini coefficients of LGAs. This relationship was evident after adjusting for socioeconomic disadvantage and remoteness of LGAs. For both measures of hospitalisation the relationship was curvilinear; increases in income inequality were initially associated with declining rates of hospitalisation followed by large increases as the Gini coefficient increased beyond 0.15. The pattern for chronic alcohol-attributable death was similar, but without the initial decrease. There was no association between income inequality and acute alcohol-attributable death, probably due to the relatively small number of these types of death.</p> <p>Conclusion</p> <p>We found a curvilinear relationship between income inequality and the rates of some types of alcohol-attributable hospitalisation and death at a local area level in Australia. While alcohol-attributable harms generally increased with increasing income inequality, alcohol-attributable hospitalisations actually showed the reverse relationship at low levels of income inequality. The curvilinear patterns we observed are inconsistent with monotonic trends found in previous research making our findings incompatible with previous explanations of the relationship between income inequality and health related harms.</p
Timing the Landmark Events in the Evolution of Clear Cell Renal Cell Cancer: TRACERx Renal.
Clear cell renal cell carcinoma (ccRCC) is characterized by near-universal loss of the short arm of chromosome 3, deleting several tumor suppressor genes. We analyzed whole genomes from 95 biopsies across 33 patients with clear cell renal cell carcinoma. We find hotspots of point mutations in the 5'Â UTR of TERT, targeting a MYC-MAX-MAD1 repressor associated with telomere lengthening. The most common structural abnormality generates simultaneous 3p loss and 5q gain (36% patients), typically through chromothripsis. This event occurs in childhood or adolescence, generally as the initiating event that precedes emergence of the tumor's most recent common ancestor by years to decades. Similar genomic changes drive inherited ccRCC. Modeling differences in age incidence between inherited and sporadic cancers suggests that the number of cells with 3p loss capable of initiating sporadic tumors is no more than a few hundred. Early development of ccRCC follows well-defined evolutionary trajectories, offering opportunity for early intervention
Recommended from our members
Surfacing Small Worlds through Data-In-Place
We present findings from a five-week deployment of voting technologies in a city neighbourhood. Drawing on Marresâ (2012) work on material participation and Masseyâs (2005) conceptualisation of space as dynamic, we designed the deployment such that the technologies (which were situated in residentsâ homes, on the street, and available online) would work in concert, cutting across the neighbourhood to make visible, juxtapose and draw together the different âsmall worldsâ within it. We demonstrate how the material infrastructure of the voting devices set in motion particular processes and interpretations of participation, putting data in place in a way that had ramifications for the recognition of heterogeneity. We conclude that redistributing participation means not only opening up access, so that everyone can participate, or even providing a multitude of voting channels, so that people can participate in different ways. Rather, it means making visible multiplicity, challenging notions of similarity, and showing how difference may be productive
Early Infrared Spectral Development of V1187 Scorpii (Nova Scorpii 2004 No. 2)
We report on an unprecedented infrared time series of spectra of V1187 Sco, a very fast ONeMg nova. The observations covered a 56 day period (2004 August 6-September 30) starting 2 days after the nova's peak brightness. Time evolution of the spectra revealed changing line strengths and profiles on timescales of less than a day to weeks as the nova evolved from early postmaximum to early coronal phases. When our ground-based optical and Spitzer Space Telescope data were combined, the wavelength coverage of 0.38-36 ÎŒm allowed an accurate spectral energy distribution to be derived when it was about 6 weeks after outburst. Developing double structure in the He I lines showed them changing from narrow to broad in only a few days. Using the O I lines in combination with the optical spectra, we derived a reddening of E(B - V) = 1.56 ± 0.08 and a distance of 4.9 ± 0.5 kpc. Modeling of the ejected material strongly suggested that it was geometrically thick with ÎR/R = 0.8-0.9 (more of a wind than a shell) and a low filling factor of order a few percent. The line shapes were consistent with a cylindrical jet, bipolar, or spherical Hubble flow expansion with a maximum speed of about -3000 km s-1. The central peak appeared to be more associated with the spherical component, while the two peaks (especially in HÎČ) suggested a ring with either a lower velocity component or with its axis inclined to the line of sight
A Systematic Review on the Diagnosis of Pediatric Bacterial Pneumonia: When Gold Is Bronze
In developing countries, pneumonia is one of the leading causes of death in children under five years of age and hence timely and accurate diagnosis is critical. In North America, pneumonia is also a common source of childhood morbidity and occasionally mortality. Clinicians traditionally have used the chest radiograph as the gold standard in the diagnosis of pneumonia, but they are becoming increasingly aware that it is not ideal. Numerous studies have shown that chest radiography findings lack precision in defining the etiology of childhood pneumonia. There is no single test that reliably distinguishes bacterial from non-bacterial causes. These factors have resulted in clinicians historically using a combination of physical signs and chest radiographs as a 'gold standard', though this combination of tests has been shown to be imperfect for diagnosis and assigning treatment. The objectives of this systematic review are to: 1) identify and categorize studies that have used single or multiple tests as a gold standard for assessing accuracy of other tests, and 2) given the 'gold standard' used, determine the accuracy of these other tests for diagnosing childhood bacterial pneumonia.Search strategies were developed using a combination of subject headings and keywords adapted for 18 electronic bibliographic databases from inception to May 2008. Published studies were included if they: 1) included children one month to 18 years of age, 2) provided sufficient data regarding diagnostic accuracy to construct a 2x2 table, and 3) assessed the accuracy of one or more index tests as compared with other test(s) used as a 'gold standard'. The literature search revealed 5,989 references of which 256 were screened for inclusion, resulting in 25 studies that satisfied all inclusion criteria. The studies examined a range of bacterium types and assessed the accuracy of several combinations of diagnostic tests. Eleven different gold standards were studied in the 25 included studies. Criterion validity was calculated for fourteen different index tests using eleven different gold standards. The most common gold standard utilized was blood culture tests used in six studies. Fourteen different tests were measured as index tests. PCT was the most common measured in five studies each with a different gold standard.We have found that studies assessing the diagnostic accuracy of clinical, radiological, and laboratory tests for bacterial childhood pneumonia have used a heterogeneous group of gold standards, and found, at least in part because of this, that index tests have widely different accuracies. These findings highlight the need for identifying a widely accepted gold standard for diagnosis of bacterial pneumonia in children
ARF1 prevents aberrant type I interferon induction by regulating STING activation and recycling
International audienceAbstract Type I interferon (IFN) signalling is tightly controlled. Upon recognition of DNA by cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING) translocates along the endoplasmic reticulum (ER)-Golgi axis to induce IFN signalling. Termination is achieved through autophagic degradation or recycling of STING by retrograde Golgi-to-ER transport. Here, we identify the GTPase ADP-ribosylation factor 1 (ARF1) as a crucial negative regulator of cGAS-STING signalling. Heterozygous ARF1 missense mutations cause a previously unrecognized type I interferonopathy associated with enhanced IFN-stimulated gene expression. Disease-associated, GTPase-defective ARF1 increases cGAS-STING dependent type I IFN signalling in cell lines and primary patient cells. Mechanistically, mutated ARF1 perturbs mitochondrial morphology, causing cGAS activation by aberrant mitochondrial DNA release, and leads to accumulation of active STING at the Golgi/ERGIC due to defective retrograde transport. Our data show an unexpected dual role of ARF1 in maintaining cGAS-STING homeostasis, through promotion of mitochondrial integrity and STING recycling
- âŠ