227 research outputs found

    Variability in the extreme helium star LSS 5121

    Get PDF
    We report a photometric and spectroscopic study of the hot extreme helium star LSS 5121. We found photometric variability, but no period was evident in its periodogram. This is consistent with the previous proposal, based on spectral line variations, that LSS 5121 is a non-radial pulsator similar to other hot extreme helium stars.Comment: 5 pages, 6 figure

    Orbital Characteristics of the Subdwarf-B and F V Star Binary EC~20117-4014(=V4640 Sgr)

    Get PDF
    Among the competing evolution theories for subdwarf-B (sdB) stars is the binary evolution scenario. EC~20117-4014 (=V4640~Sgr) is a spectroscopic binary system consisting of a pulsating sdB star and a late F main-sequence companion (O'Donoghue et al. 1997), however the period and the orbit semi-major axes have not been precisely determined. This paper presents orbital characteristics of the EC 20117-4014 binary system using 20 years of photometric data. Periodic Observed minus Calculated (O-C) variations were detected in the two highest amplitude pulsations identified in the EC 20117-4014 power spectrum, indicating the binary system's precise orbital period (P = 792.3 days) and the light-travel time amplitude (A = 468.9 s). This binary shows no significant orbital eccentricity and the upper limit of the eccentricity is 0.025 (using 3 σ\sigma as an upper limit). This upper limit of the eccentricity is the lowest among all wide sdB binaries with known orbital parameters. This analysis indicated that the sdB is likely to have lost its hydrogen envelope through stable Roche lobe overflow, thus supporting hypotheses for the origin of sdB stars. In addition to those results, the underlying pulsation period change obtained from the photometric data was P˙\dot{P} = 5.4 (±\pm0.7) ×\times 101410^{-14} d d1^{-1}, which shows that the sdB is just before the end of the core helium-burning phase

    Structure and Dynamics of Minke Whale Surfacing Patterns in the Gulf of St. Lawrence, Canada

    Get PDF
    Funding: This work was supported by the Foundation for Marine Environment Research (ORES), Switzerland and Ocean Care, Switzerland. Copyright: © 2015 Christiansen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedPeer reviewedPublisher PD

    Temperature and gravity of the pulsating extreme helium star LSS 3184 (BX Cir) through its pulsation cycle

    Get PDF
    We report the analysis of optical spectra of the extreme helium star LSS 3184 (BX Cir) to determine its effective temperature and gravity throughout its pulsation cycle. The spectra were also used to measure its chemical abundances. We report rest gravity, log g = 3.38 +/- 0.02, and a chemical abundance mixture consistent with those reported earlier in a study using an optical spectrum with lower spectral resolution and a lower signal to noise ratio. Our analysis decreases the upper limit for the H abundance to H < 6.0 (mass fraction < 7.1 x 10^-7). Our gravity corresponds to stellar mass M = 0.47 +/- 0.03 M_sun. We find that the effective log g varies through the pulsation cycle with an amplitude of 0.28 dex. The effective gravity is smaller than the rest gravity except when the star is very near its minimum radius. The change in effective gravity is primarily caused by acceleration of the stellar surface. Based on the optical spectra, we find the temperature varies with an amplitude of 3450 K. We find a time averaged mean temperature, 23390 +/- 90 K, consistent with that found in the earlier optical spectrum study. The mean temperature is 1750 K hotter than that found using combined ultraviolet spectra and V and R photometry and the variation amplitude is larger. This discrepancy is similar to that found for the extreme helium star V652 Her.Comment: 7 pages, 6 figures, LaTeX, to be published in A&

    Investigating the properties of granulation in the red giants observed by Kepler

    Full text link
    More than 1000 red giants have been observed by NASA/Kepler mission during a nearly continuous period of ~ 13 months. The resulting high-frequency resolution (< 0.03 muHz) allows us to study the granulation parameters of these stars. The granulation pattern results from the convection motions leading to upward flows of hot plasma and downward flows of cooler plasma. We fitted Harvey-like functions to the power spectra, to retrieve the timescale and amplitude of granulation. We show that there is an anti-correlation between both of these parameters and the position of maximum power of acoustic modes, while we also find a correlation with the radius, which agrees with the theory. We finally compare our results with 3D models of the convection.Comment: 4 pages, 1 figure. To appear in the ASP proceedings of "The 61st Fujihara seminar: Progress in solar/stellar physics with helio- and asteroseismology", 13th-17th March 2011, Hakone, Japa

    ExoMol line lists - XLIV. IR and UV line list for silicon monoxide (SiO)

    Get PDF
    A new silicon monoxide (28Si16O) line list covering infrared, visible and ultraviolet regions called SiOUVenIR is presented. This line list extends the infrared EBJT ExoMol line list by including vibronic transitions to the A 1Π and E 1Σ+ electronic states. Strong perturbations to the A 1Π band system are accurately modelled through the treatment of 6 dark electronic states: C 1Σ−, D 1Δ, a 3Σ+, b 3Π, e 3Σ− and d 3Δ. Along with the X 1Σ+ ground state, these 9 electronic states were used to build a comprehensive spectroscopic model of SiO using a combination of empirical and ab initio curves, including the potential energy (PE), spin-orbit (SO), electronic angular momentum (EAM) and (transition) dipole moment curves. The ab initio PE and coupling curves, computed at the multireference configuration interaction (MRCI) level of theory, were refined by fitting their analytical representations to 2617 experimentally derived SiO energy levels determined from 97 vibronic bands belonging to the X–X, E–X and A–X electronic systems through the MARVEL procedure. 112 observed forbidden transitions from the C–X, D–X, e–X, and d–X bands were assigned using our predictions, and these could be fed back into the MARVEL procedure. The SiOUVenIR line list was computed using published ab initio transition dipole moments for the E–X and A–X bands; the line list is suitable for temperatures up to 10 000 K and for wavelengths longer than 140 nm. SiOUVenIR is available from www.exomol.com and the CDS database

    ExoMol line lists - XLIV. IR and UV line list for silicon monoxide (SiO)

    Get PDF
    A new silicon monoxide (28Si16O) line list covering infrared, visible and ultraviolet regions called SiOUVenIR is presented. This line list extends the infrared EBJT ExoMol line list by including vibronic transitions to the A 1Π and E 1Σ+ electronic states. Strong perturbations to the A 1Π band system are accurately modelled through the treatment of 6 dark electronic states: C 1Σ−, D 1Δ, a 3Σ+, b 3Π, e 3Σ− and d 3Δ. Along with the X 1Σ+ ground state, these 9 electronic states were used to build a comprehensive spectroscopic model of SiO using a combination of empirical and ab initio curves, including the potential energy (PE), spin-orbit (SO), electronic angular momentum (EAM) and (transition) dipole moment curves. The ab initio PE and coupling curves, computed at the multireference configuration interaction (MRCI) level of theory, were refined by fitting their analytical representations to 2617 experimentally derived SiO energy levels determined from 97 vibronic bands belonging to the X–X, E–X and A–X electronic systems through the MARVEL procedure. 112 observed forbidden transitions from the C–X, D–X, e–X, and d–X bands were assigned using our predictions, and these could be fed back into the MARVEL procedure. The SiOUVenIR line list was computed using published ab initio transition dipole moments for the E–X and A–X bands; the line list is suitable for temperatures up to 10 000 K and for wavelengths longer than 140 nm. SiOUVenIR is available from www.exomol.com and the CDS database

    Prospects for radical emissions reduction through behaviour and lifestyle change

    Get PDF
    Over the past two decades, scholars and practitioners across the social sciences, in policy and beyond have proposed, trialled and developed a wide range of theoretical and practical approaches designed to bring about changes in behaviours and lifestyles that contribute to climate change. With the exception of the establishment of a small number of iconic behaviours such as recycling, it has however proved extremely difficult to bring about meaningful transformations in personal greenhouse gas emissions at either the individual or societal level, with multiple reviews now pointing to the limited efficacy of current approaches. We argue that the majority of approaches designed to achieve mitigation have been constrained by the need to operate within prevailing social scientific, economic and political orthodoxies which have precluded the possibility of non-marginal change. In this paper we ask what a truly radical approach to reducing personal emissions would look like from social science perspectives which challenge the unstated assumptions severely limiting action to date, and which explore new alternatives for change. We emphasise the difficulties likely to impede the instituting of genuinely radical societal change regarding climate change mitigation, whilst proposing ways that the ground could be prepared for such a transformation to take place
    corecore