621 research outputs found

    Systematic Influences on Teaching Evaluations : The Case for Caution

    Get PDF
    The evaluation of teaching and learning has become an important activity in tertiary education institutions. Student surveys provide information about student perceptions and judgments of a particular subject. However, as is widely recognised, the appropriate interpretation of this data is problematic. There is a large literature, mainly for the US, on the use and usefulness of student subject evaluations. This literature has highlighted a number of ‘mitigating factors’ such as subject difficulty, discipline area, etc., that should be taken into account in interpreting the results of these questionnaires. In this paper we examine 8 years of QOT responses from an Economics Department in an Australian University which accounted for more than 79,000 student subject enrolments in 565 subjects. The purpose of this analysis is to establish how the information contained in these data can be used to interpret the responses. In particular, we determine to what extent other factors besides the instructor in charge of the subject have an impact on the raw average student evaluation scores. We find that the following characteristics of the students in these classes had an influence on the average QOT score: year level, enrolment size, the quantitative nature of the subject, the country of origin of the students, the proportion that are female, Honours status of the student, the differential in their mark from previous marks, quality of workbook, quality of textbook and the relative QOT score versus other subjects taught at the same time. However, a number of other factors proposed in the literature to be important influences were found not to be. These include the student’s fee paying status, whether they attended a public, private or catholic secondary school, which other faculty within the University they came from, and if the subject was taught in multiple sessions.

    Creation of an ultra scale-down bioreactor mimic for rapid development of lignocellulosic enzymatic hydrolysis processes

    Get PDF
    BACKGROUND Cellulosic bioethanol processes involve several steps, all of which require experimental optimisation. A significant aid to this research would be a validated ultra scale-down (USD) model that could be used to perform rapid, wide ranging screening and optimisation experiments using limited materials under process relevant conditions. RESULTS In this work, the use of 30 mL shaken conical tubes as a USD model for an enzymatic hydrolysis process is established. The approach is demonstrated for the hydrolysis of distillers' dried grains with solubles (DDGS). Results from the USD tubes closely mimic those obtained from 4 L stirred tanks, in terms of the rate, composition and concentrations of sugars released, representing an 80-fold scale reduction. The utility of the USD approach is illustrated by investigating factors that may be limiting hydrolysis yields at high solids loadings. Washing the residual solids periodically during hydrolysis allowed 100% of the available sugar to be hydrolysed using commercially available enzymes. CONCLUSION The results demonstrate that the USD system reported successfully mimics the performance of conventional stirred tanks under industrially relevant conditions. The utility of the system was confirmed through its use to investigate performance limitation using a commercially relevant feedstock

    Repetitive Segmental Structure of the Transducin β Subunit: Homology with the CDC4 Gene and Identification of Related mRNAs

    Get PDF
    Retinal transducin, a guanine nucleotide regulatory protein (referred to as a G protein) that activates a cGMP phosphodiesterase in photoreceptor cells, is comprised of three subunits. We have identified and analyzed cDNA clones of the bovine transducin β subunit that may be highly conserved or identical to that in other G proteins. From the cDNA nucleotide sequence of the entire coding region, the primary structure of a 340-amino acid protein was deduced. The encoded β subunit has a Mr of 37,375 and is comprised of repetitive homologous segments arranged in tandem. Furthermore, significant homology in primary structure and segmental sequence exists between the β subunit and the yeast CDC4 gene product. The Mr 37,375 β subunit polypeptide is encoded by a 2.9-kilobase (kb) mRNA. However, there exists in retina other β-related mRNAs that are divergent from the 2.9-kb mRNA on the basis of oligonucleotide and primer-extended probe hybridizations. All mammalian tissues and clonal cell lines that have been examined contain at least two β-related mRNAs, usually 1.8 and 2.9 kb in length. These results suggest that the mRNAs are the processed products of a small number of closely related genes or of a single highly complex β gene

    Non-destructive, dynamic detectors for Bose-Einstein condensates

    Full text link
    We propose and analyze a series of non-destructive, dynamic detectors for Bose-Einstein condensates based on photo-detectors operating at the shot noise limit. These detectors are compatible with real time feedback to the condensate. The signal to noise ratio of different detection schemes are compared subject to the constraint of minimal heating due to photon absorption and spontaneous emission. This constraint leads to different optimal operating points for interference-based schemes. We find the somewhat counter-intuitive result that without the presence of a cavity, interferometry causes as much destruction as absorption for optically thin clouds. For optically thick clouds, cavity-free interferometry is superior to absorption, but it still cannot be made arbitrarily non-destructive . We propose a cavity-based measurement of atomic density which can in principle be made arbitrarily non-destructive for a given signal to noise ratio

    Control of an atom laser using feedback

    Get PDF
    A generalised method of using feedback to control Bose-Einstein condensates is introduced. The condensates are modelled by the Gross-Pitaevskii equation, so only semiclassical fluctations can be suppressed, and back-action from the measurement is ignored. We show that for any available control, a feedback scheme can be found to reduce the energy while the appropriate moment is still dynamic. We demonstrate these schemes by considering a condensate trapped in a harmonic potential that can be modulated in strength and position. The formalism of our feedback scheme also allows the inclusion of certain types of non-linear controls. If the non-linear interaction between the atoms can be controlled via a Feshbach resonance, we show that the feedback process can operate with a much higher efficiency.Comment: 6 pages, 7 figure

    Order via Nonlinearity in Randomly Confined Bose Gases

    Full text link
    A Hartree-Fock mean-field theory of a weakly interacting Bose-gas in a quenched white noise disorder potential is presented. A direct continuous transition from the normal gas to a localized Bose-glass phase is found which has localized short-lived excitations with a gapless density of states and vanishing superfluid density. The critical temperature of this transition is as for an ideal gas undergoing Bose-Einstein condensation. Increasing the particle-number density a first-order transition from the localized state to a superfluid phase perturbed by disorder is found. At intermediate number densities both phases can coexist.Comment: Author Information under http://www.theo-phys.uni-essen.de/tp/ags/pelster_dir/. International Journal of Bifurcation and Chaos (in press

    Numerical study of one-dimensional and interacting Bose-Einstein condensates in a random potential

    Full text link
    We present a detailed numerical study of the effect of a disordered potential on a confined one-dimensional Bose-Einstein condensate, in the framework of a mean-field description. For repulsive interactions, we consider the Thomas-Fermi and Gaussian limits and for attractive interactions the behavior of soliton solutions. We find that the disorder average spatial extension of the stationary density profile decreases with an increasing strength of the disordered potential both for repulsive and attractive interactions among bosons. In the Thomas Fermi limit, the suppression of transport is accompanied by a strong localization of the bosons around the state k=0 in momentum space. The time dependent density profiles differ considerably in the cases we have considered. For attractive Bose-Einstein condensates, a bright soliton exists with an overall unchanged shape, but a disorder dependent width. For weak disorder, the soliton moves on and for a stronger disorder, it bounces back and forth between high potential barriers.Comment: 13 pages, 13 figures, few typos correcte

    Heterogeneous reactions in aircraft gas turbine engines

    Get PDF
    [1] One-dimensional flow models and unity probability heterogeneous rate parameters are used to estimate the maximum effect of heterogeneous reactions on trace species evolution in aircraft gas turbines. The analysis includes reactions on soot particulates and turbine/nozzle material surfaces. Results for a representative advanced subsonic engine indicate the net change in reactant mixing ratios due to heterogeneous reactions is <10 À6 for O 2 , CO 2 , and H 2 O, and <10 À10 for minor combustion products such as SO 2 and NO 2 . The change in the mixing ratios relative to the initial values is < 0.01%. Since these estimates are based on heterogeneous reaction probabilities of unity, the actual changes will be even lower. Thus, heterogeneous chemistry within the engine cannot explain the high conversion of SO 2 to SO 3 whicsome wake models require to explain the observed levels of vola tile aerosols. Furthermore, turbine heterogeneous processes will not effect exhaust NO x or NO y levels
    • …
    corecore