197 research outputs found

    Competition between Replicative and Translesion Polymerases during Homologous Recombination Repair in Drosophila

    Get PDF
    In metazoans, the mechanism by which DNA is synthesized during homologous recombination repair of double-strand breaks is poorly understood. Specifically, the identities of the polymerase(s) that carry out repair synthesis and how they are recruited to repair sites are unclear. Here, we have investigated the roles of several different polymerases during homologous recombination repair in Drosophila melanogaster. Using a gap repair assay, we found that homologous recombination is impaired in Drosophila lacking DNA polymerase zeta and, to a lesser extent, polymerase eta. In addition, the Pol32 protein, part of the polymerase delta complex, is needed for repair requiring extensive synthesis. Loss of Rev1, which interacts with multiple translesion polymerases, results in increased synthesis during gap repair. Together, our findings support a model in which translesion polymerases and the polymerase delta complex compete during homologous recombination repair. In addition, they establish Rev1 as a crucial factor that regulates the extent of repair synthesis

    Sgs1 and Exo1 Redundantly Inhibit Break-Induced Replication and De Novo Telomere Addition at Broken Chromosome Ends

    Get PDF
    In budding yeast, an HO endonuclease-inducible double-strand break (DSB) is efficiently repaired by several homologous recombination (HR) pathways. In contrast to gene conversion (GC), where both ends of the DSB can recombine with the same template, break-induced replication (BIR) occurs when only the centromere-proximal end of the DSB can locate homologous sequences. Whereas GC results in a small patch of new DNA synthesis, BIR leads to a nonreciprocal translocation. The requirements for completing BIR are significantly different from those of GC, but both processes require 5′ to 3′ resection of DSB ends to create single-stranded DNA that leads to formation of a Rad51 filament required to initiate HR. Resection proceeds by two pathways dependent on Exo1 or the BLM homolog, Sgs1. We report that Exo1 and Sgs1 each inhibit BIR but have little effect on GC, while overexpression of either protein severely inhibits BIR. In contrast, overexpression of Rad51 markedly increases the efficiency of BIR, again with little effect on GC. In sgs1Δ exo1Δ strains, where there is little 5′ to 3′ resection, the level of BIR is not different from either single mutant; surprisingly, there is a two-fold increase in cell viability after HO induction whereby 40% of all cells survive by formation of a new telomere within a few kb of the site of DNA cleavage. De novo telomere addition is rare in wild-type, sgs1Δ, or exo1Δ cells. In sgs1Δ exo1Δ, repair by GC is severely inhibited, but cell viaiblity remains high because of new telomere formation. These data suggest that the extensive 5′ to 3′ resection that occurs before the initiation of new DNA synthesis in BIR may prevent efficient maintenance of a Rad51 filament near the DSB end. The severe constraint on 5′ to 3′ resection, which also abrogates activation of the Mec1-dependent DNA damage checkpoint, permits an unprecedented level of new telomere addition

    Extensive DNA End Processing by Exo1 and Sgs1 Inhibits Break-Induced Replication

    Get PDF
    Homology-dependent repair of DNA double-strand breaks (DSBs) by gene conversion involves short tracts of DNA synthesis and limited loss of heterozygosity (LOH). For DSBs that present only one end, repair occurs by invasion into a homologous sequence followed by replication to the end of the chromosome resulting in extensive LOH, a process called break-induced replication (BIR). We developed a BIR assay in Saccharomyces cerevisiae consisting of a plasmid with a telomere seeding sequence separated from sequence homologous to chromosome III by an I-SceI endonuclease recognition site. Following cleavage of the plasmid by I-SceI in vivo, de novo telomere synthesis occurs at one end of the vector, and the other end invades at the homologous sequence on chromosome III and initiates replication to the end of the chromosome to generate a stable chromosome fragment (CF). BIR was infrequent in wild-type cells due to degradation of the linearized vector. However, in the exo1Δ sgs1Δ mutant, which is defective in the 5′-3′ resection of DSBs, the frequency of BIR was increased by 39-fold. Extension of the invading end of the plasmid was detected by physical analysis two hours after induction of the I-SceI endonuclease in the wild-type exo1Δ, sgs1Δ, and exo1Δ sgs1Δ mutants, but fully repaired products were only visible in the exo1Δ sgs1Δ mutant. The inhibitory effect of resection was less in a plasmid-chromosome gene conversion assay, compared to BIR, and products were detected by physical assay in the wild-type strain. The rare chromosome rearrangements due to BIR template switching at repeated sequences were increased in the exo1Δ sgs1Δ mutant, suggesting that reduced resection can decrease the fidelity of homologous recombination

    DNA Resection at Chromosome Breaks Promotes Genome Stability by Constraining Non-Allelic Homologous Recombination

    Get PDF
    DNA double-strand breaks impact genome stability by triggering many of the large-scale genome rearrangements associated with evolution and cancer. One of the first steps in repairing this damage is 5′→3′ resection beginning at the break site. Recently, tools have become available to study the consequences of not extensively resecting double-strand breaks. Here we examine the role of Sgs1- and Exo1-dependent resection on genome stability using a non-selective assay that we previously developed using diploid yeast. We find that Saccharomyces cerevisiae lacking Sgs1 and Exo1 retains a very efficient repair process that is highly mutagenic to genome structure. Specifically, 51% of cells lacking Sgs1 and Exo1 repair a double-strand break using repetitive sequences 12–48 kb distal from the initial break site, thereby generating a genome rearrangement. These Sgs1- and Exo1-independent rearrangements depend partially upon a Rad51-mediated homologous recombination pathway. Furthermore, without resection a robust cell cycle arrest is not activated, allowing a cell with a single double-strand break to divide before repair, potentially yielding multiple progeny each with a different rearrangement. This profusion of rearranged genomes suggests that cells tolerate any dangers associated with extensive resection to inhibit mutagenic pathways such as break-distal recombination. The activation of break-distal recipient repeats and amplification of broken chromosomes when resection is limited raise the possibility that genome regions that are difficult to resect may be hotspots for rearrangements. These results may also explain why mutations in resection machinery are associated with cancer

    Incongruous consultation behaviour: results from a UK-wide population survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Symptom characteristics are strong drivers of care seeking. Despite this, incongruous consultation behaviour occurs and has implications for both individuals and health-care services. The aim of this study was to determine how frequently incongruous consultation behaviour occurs, to examine whether it is more common for certain types of symptoms and to identify the factors associated with being an incongruous consulter.</p> <p>Methods</p> <p>An age and sex stratified random sample of 8,000 adults was drawn from twenty UK general practices. A postal questionnaire was used to collect detailed information on the presence and characteristics of 25 physical and psychological symptoms, actions taken to manage the symptoms, general health, attitudes to symptom management and demographic/socio-economic details. Two types of incongruous consultation behaviour were examined: i) consultation with a GP for symptoms self-rated as low impact and ii) no consultation with a GP for symptoms self-rated as high impact.</p> <p>Results</p> <p>A fifth of all symptoms experienced resulted in consultation behaviour which was incongruous based on respondents' own rating of the symptoms' impact. Low impact consultations were not common, although symptoms indicative of a potentially serious condition resulted in a higher proportion of low impact consultations. High impact non-consultations were more common, although there was no clear pattern in the type of associated symptoms. Just under half of those experiencing symptoms in the previous two weeks were categorised as an incongruous consulter (low impact consulter: 8.3%, high impact non-consulter: 37.1%). Employment status, having a chronic condition, poor health, and feeling that reassurance or advice from a health professional is important were associated with being a low impact consulter. Younger age, employment status, being an ex-smoker, poor health and feeling that not wasting the GPs time is important were associated with being a high impact non-consulter.</p> <p>Conclusions</p> <p>This is one of the first studies to examine incongruous consultation behaviour for a range of symptoms. High impact non-consultations were common and may have important health implications, particularly for symptoms indicative of serious disease. More research is now needed to examine incongruous consultation behaviour and its impact on both the public's health and health service use.</p

    Formation of Complex and Unstable Chromosomal Translocations in Yeast

    Get PDF
    Genome instability, associated with chromosome breakage syndromes and most human cancers, is still poorly understood. In the yeast Saccharomyces cerevisiae, numerous genes with roles in the preservation of genome integrity have been identified. DNA-damage-checkpoint-deficient yeast cells that lack Sgs1, a RecQ-like DNA helicase related to the human Bloom's-syndrome-associated helicase BLM, show an increased rate of genome instability, and we have previously shown that they accumulate recurring chromosomal translocations between three similar genes, CAN1, LYP1 and ALP1. Here, the chromosomal location, copy number and sequence similarity of the translocation targets ALP1 and LYP1 were altered to gain insight into the formation of complex translocations. Among 844 clones with chromosomal rearrangements, 93 with various types of simple and complex translocations involving CAN1, LYP1 and ALP1 were identified. Breakpoint sequencing and mapping showed that the formation of complex translocation types is strictly dependent on the location of the initiating DNA break and revealed that complex translocations arise via a combination of interchromosomal translocation and template-switching, as well as from unstable dicentric intermediates. Template-switching occurred between sequences on the same chromosome, but was inhibited if the genes were transferred to different chromosomes. Unstable dicentric translocations continuously gave rise to clones with multiple translocations in various combinations, reminiscent of intratumor heterogeneity in human cancers. Base substitutions and evidence of DNA slippage near rearrangement breakpoints revealed that translocation formation can be accompanied by point mutations, and their presence in different translocation types within the same clone provides evidence that some of the different translocation types are derived from each other rather than being formed de novo. These findings provide insight into eukaryotic genome instability, especially the formation of translocations and the sources of intraclonal heterogeneity, both of which are often associated with human cancers

    Impact of Dreissena fouling on the physiological condition of native and invasive bivalves : interspecific and temporal variations

    Get PDF
    The impact of Dreissena fouling on unionids has hardly been studied in Europe, despite the fact that in some ecosystems (e.g. Lake Balaton, Hungary) infestations of several hundreds to a thousand individuals per unionid have been observed. At present, the zebra mussel Dreissena polymorpha is a dominant species in Lake Balaton and in the last decade three other invasive bivalves were introduced, potentially increasing the pressure on native unionid survival. We examined whether the fouling of dreissenids (zebra and quagga (D. rostriformis bugensis) mussels) has a negative impact on native (Anodonta anatina, Unio pictorum and U. tumidus) and invasive (Corbicula fluminea and Sinanodonta woodiana) bivalves and whether there are any interspecific and temporal variations in fouling intensity and physiological condition measured by standard condition index and glycogen content. A significant negative impact was detected on native unionids only in July and September (no impact was detected in May), when the fouling rate was high. For invasive species, a significant negative impact was detected on S. woodiana with a high level of dressenid infestation; whereas no significant impact was detected on C. fluminea. Overall, this study confirms that Dreissena may threaten unionid species including the invasive S. woodiana, although high interspecific and temporal variations were observed. This situation should be taken into account in future ecological and conservational assessments because species respond differently to Dreissena fouling and effects seem to be more pronounced in late summer/early autumn. In addition, this study provides the first evidence that the invasive C. fluminea appear to be less vulnerable to dressenid fouling.The study was supported by the Hungarian Scientific Fund (KTIA-OTKA) under the contract No. CNK80140

    Monitoring the EU protected Geomalacus maculosus (Kerry Slug): what are the factors affecting catch returns in open and forested habitats?

    Get PDF
    Geomalacus maculosus is a slug species protected under EU law with a distribution limited to the west of Ireland and north-west Iberia. The species, originally thought to be limited within Ireland to deciduous woodland and peatland, has been found in a number of commercial conifer plantations since 2010. While forest managers are now required to incorporate the protection of the species where it is present, no clear species monitoring protocols are currently available. This study examines the efficacy of De Sangosse refuge traps across three habitats frequently associated with commercial forest plantations in Ireland and compares them with hand searching, a commonly used method for slug monitoring. Catch data during different seasons and under different weather conditions are also presented. Results indicate that autumn is the optimal time for sampling G. maculosus but avoiding extremes of hot or cold weather. While refuge traps placed at 1.5 m on trees in mature conifer plantations and directly on exposed rock in blanket peatlands result in significantly greater catches, hand searching is the most successful approach for clear-fell areas. Hand searches in clear-fell preceded by rain are likely to result in greater numbers caught. The results of this study form, for the first time, the basis for G. maculosus monitoring guidelines for forestry managers. © 2016, The Ecological Society of Japa

    Conservation Genetics of a Critically Endangered Limpet Genus and Rediscovery of an Extinct Species

    Get PDF
    A third of all known freshwater mollusk extinctions worldwide have occurred within a single medium-sized American drainage. The Mobile River Basin (MRB) of Alabama, a global hotspot of temperate freshwater biodiversity, was intensively industrialized during the 20(th) century, driving 47 of its 139 endemic mollusk species to extinction. These include the ancylinid limpet Rhodacmea filosa, currently classified as extinct (IUCN Red List), a member of a critically endangered southeastern North American genus reduced to a single known extant population (of R. elatior) in the MRB.We document here the tripling of known extant populations of this North American limpet genus with the rediscovery of enduring Rhodacmea filosa in a MRB tributary and of R. elatior in its type locality: the Green River, Kentucky, an Ohio River Basin (ORB) tributary. Rhodacmea species are diagnosed using untested conchological traits and we reassessed their systematic and conservation status across both basins using morphometric and genetic characters. Our data corroborated the taxonomic validity of Rhodacmea filosa and we inferred a within-MRB cladogenic origin from a common ancestor bearing the R. elatior shell phenotype. The geographically-isolated MRB and ORB R. elatior populations formed a cryptic species complex: although overlapping morphometrically, they exhibited a pronounced phylogenetic disjunction that greatly exceeded that of within-MRB R. elatior and R. filosa sister species.Rhodacmea filosa, the type species of the genus, is not extinct. It persists in a Coosa River tributary and morphometric and phylogenetic analyses confirm its taxonomic validity. All three surviving populations of the genus Rhodacmea merit specific status. They collectively contain all known survivors of a phylogenetically highly distinctive North American endemic genus and therefore represent a concentrated fraction of continental freshwater gastropod biodiversity. We recommend the establishment of a proactive targeted conservation program that may include their captive propagation and reintroduction
    corecore