266 research outputs found

    Superconductivity at the Border of Electron Localization and Itinerancy

    Full text link
    The superconducting state of iron pnictides and chalcogenides exists at the border of antiferromagnetic order. Consequently, these materials could provide clues about the relationship between magnetism and unconventional superconductivity. One explanation, motivated by the so-called bad-metal behaviour of these materials, proposes that magnetism and superconductivity develop out of quasi-localized magnetic moments which are generated by strong electron-electron correlations. Another suggests that these phenomena are the result of weakly interacting electron states that lie on nested Fermi surfaces. Here we address the issue by comparing the newly discovered alkaline iron selenide superconductors, which exhibit no Fermi-surface nesting, to their iron pnictide counterparts. We show that the strong-coupling approach leads to similar pairing amplitudes in these materials, despite their different Fermi surfaces. We also find that the pairing amplitudes are largest at the boundary between electronic localization and itinerancy, suggesting that new superconductors might be found in materials with similar characteristics.Comment: Version of the published manuscript prior to final journal-editting. Main text (23 pages, 4 figures) + Supplementary Information (14 pages, 7 figures, 3 tables). Calculation on the single-layer FeSe is added. Enhancement of the pairing amplitude in the vicinity of the Mott transition is highlighted. Published version is at http://www.nature.com/ncomms/2013/131115/ncomms3783/full/ncomms3783.htm

    Electronic Origin of High Temperature Superconductivity in Single-Layer FeSe Superconductor

    Full text link
    The latest discovery of high temperature superconductivity signature in single-layer FeSe is significant because it is possible to break the superconducting critical temperature ceiling (maximum Tc~55 K) that has been stagnant since the discovery of Fe-based superconductivity in 2008. It also blows the superconductivity community by surprise because such a high Tc is unexpected in FeSe system with the bulk FeSe exhibiting a Tc at only 8 K at ambient pressure which can be enhanced to 38 K under high pressure. The Tc is still unusually high even considering the newly-discovered intercalated FeSe system A_xFe_{2-y}Se_2 (A=K, Cs, Rb and Tl) with a Tc at 32 K at ambient pressure and possible Tc near 48 K under high pressure. Particularly interesting is that such a high temperature superconductivity occurs in a single-layer FeSe system that is considered as a key building block of the Fe-based superconductors. Understanding the origin of high temperature superconductivity in such a strictly two-dimensional FeSe system is crucial to understanding the superconductivity mechanism in Fe-based superconductors in particular, and providing key insights on how to achieve high temperature superconductivity in general. Here we report distinct electronic structure associated with the single-layer FeSe superconductor. Its Fermi surface topology is different from other Fe-based superconductors; it consists only of electron pockets near the zone corner without indication of any Fermi surface around the zone center. Our observation of large and nearly isotropic superconducting gap in this strictly two-dimensional system rules out existence of node in the superconducting gap. These results have provided an unambiguous case that such a unique electronic structure is favorable for realizing high temperature superconductivity

    Senescence marker protein 30 in acute liver failure: validation of a mass spectrometry proteomics assay

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our previous proteomic study showed that the senescence marker protein (SMP30) is selectively present in the plasma of a murine model of acute liver failure (ALF). The aim of this study was to validate this SMP30 expression in the plasma and liver tissues of mice and humans with ALF.</p> <p>Methods</p> <p>After the proteomic analysis of plasma from a murine model of D-galactosamine/lipopolysaccharide (GalN/LPS)-induced ALF by two-dimensional electrophoresis (2-DE) and mass spectrometry, the expression levels of SMP30 in the plasma and liver tissues were validated by western blot and RT-PCR analyses. These results were then confirmed in plasma samples from humans.</p> <p>Results</p> <p>These data validate the results of 2-DE, and western blot showed that SMP30 protein levels were only elevated in the plasma of ALF mice. Further analysis revealed that GalN/LPS induced the downregulation of SMP30 protein levels in liver tissues (by approximately 25% and 16% in the GalN/LPS-treated mice and in the treated mice that survived, respectively; <it>P </it>< 0.01). Hepatic SMP30 mRNA levels decreased by about 90% only in the mice that survived the GalN/LPS treatment. Importantly, plasma obtained from patients with ALF also contained higher levels of SMP30, about (3.65 ± 0.34) times those observed in healthy volunteers.</p> <p>Conclusion</p> <p>This study shows that SMP30 is not only a potential biomarker for the diagnosis and even prognosis of ALF. It also plays a very important role in a self-protective mechanism in survival and participates in the pathophysiological processes of ALF.</p

    Preliminary study on the utilization of Ca2+ and HCO3 − in karst water by different sources of Chlorella vulgaris

    Get PDF
    This article aims to present a picture of how a university discipline has been created in Lithuania, given the background of changes caused by the Lithuania’s emancipation from the Soviet Union. The theoretical frame of reference is provided by a modified model of Bronfenbrenners developmental ecology. Data collection has primarily been in the form of interviews with university staff from Lithuanian institutions for higher education. In addition to the interviews, literature lists, course schedules and other key documents have been collected and analysed. The analysis focuses on individual’s conceptualisation of three main areas. The study demonstrates how the creation of management and economics as a university discipline in Lithuania has been formed by a combination of political/ideological, economic, institutional and individual factors. One of the study’s main contributions is to highlight the significance of the concept of academic freedom and to focus on the paradox, where constraint under the old system is replaced by another form of constraint. In this case, where the rigidity of the old Soviet doctrine is replaced by a new freedom; but instead of being given greater opportunities to influence and change the subject, the academic staff are forced into a position where, once again they are subjugated to the influences of international sources

    Quinoline Group Modified Carbon Nanotubes for the Detection of Zinc Ions

    Get PDF
    Carbon nanotubes (CNTs) were covalently modified by fluorescence ligand (glycine-N-8-quinolylamide) and formed a hybrid material which could be used as a selective probe for metal ions detection. The anchoring to the surface of the CNTs was carried out by the reaction between the precursor and the carboxyl groups available on the surface of the support. Fourier transform infrared spectroscopy (FTIR) and Thermogravimetric analysis (TGA) unambiguously proved the existence of covalent bonds between CNTs and functional ligands. Fluorescence characterization shows that the obtained organic–inorganic hybrid composite is highly selective and sensitive (0.2 μM) to Zn(II) detection

    Edwardsiella Comparative Phylogenomics Reveal the New Intra/Inter-Species Taxonomic Relationships, Virulence Evolution and Niche Adaptation Mechanisms

    Get PDF
    Edwardsiella bacteria are leading fish pathogens causing huge losses to aquaculture industries worldwide. E. tarda is a broad-host range pathogen that infects more than 20 species of fish and other animals including humans while E. ictaluri is host-adapted to channel catfish causing enteric septicemia of catfish (ESC). Thus, these two species consist of a useful comparative system for studying the intricacies of pathogen evolution. Here we present for the first time the phylogenomic comparisons of 8 genomes of E. tarda and E. ictaluri isolates. Genome-based phylogenetic analysis revealed that E. tarda could be separate into two kinds of genotypes (genotype I, EdwGI and genotype II, EdwGII) based on the sequence similarity. E. tarda strains of EdwGI were clustered together with the E. ictaluri lineage and showed low sequence conservation to E. tarda strains of EdwGII. Multilocus sequence analysis (MLSA) of 48 distinct Edwardsiella strains also supports the new taxonomic relationship of the lineages. We identified the type III and VI secretion systems (T3SS and T6SS) as well as iron scavenging related genes that fulfilled the criteria of a key evolutionary factor likely facilitating the virulence evolution and adaptation to a broad range of hosts in EdwGI E. tarda. The surface structure-related genes may underlie the adaptive evolution of E. ictaluri in the host specification processes. Virulence and competition assays of the null mutants of the representative genes experimentally confirmed their contributive roles in the evolution/niche adaptive processes. We also reconstructed the hypothetical evolutionary pathway to highlight the virulence evolution and niche adaptation mechanisms of Edwardsiella. This study may facilitate the development of diagnostics, vaccines, and therapeutics for this under-studied pathogen

    Adenosine A1 receptor: Functional receptor-receptor interactions in the brain

    Get PDF
    Over the past decade, many lines of investigation have shown that receptor-mediated signaling exhibits greater diversity than previously appreciated. Signal diversity arises from numerous factors, which include the formation of receptor dimers and interplay between different receptors. Using adenosine A1 receptors as a paradigm of G protein-coupled receptors, this review focuses on how receptor-receptor interactions may contribute to regulation of the synaptic transmission within the central nervous system. The interactions with metabotropic dopamine, adenosine A2A, A3, neuropeptide Y, and purinergic P2Y1 receptors will be described in the first part. The second part deals with interactions between A1Rs and ionotropic receptors, especially GABAA, NMDA, and P2X receptors as well as ATP-sensitive K+ channels. Finally, the review will discuss new approaches towards treating neurological disorders
    corecore