1,265 research outputs found

    Time delay of light signals in an energy-dependent spacetime metric

    Full text link
    In this note we review the problem of time delay of photons propagating in a spacetime with a metric that explicitly depends on the energy of the particles (Gravity-Rainbow approach). We show that corrections due to this approach -- which is closely related to DSR proposal -- produce for small redshifts (z<<1z<<1) smaller time delays than in the generic Lorentz Invariance Violating case.Comment: 5 pages. This version contains two new references with respect to the published versio

    Active E-Learning by Doing with ALDO

    Get PDF
    It has been proved how teaching and learning educational processes can largely benefit from the application of ICT-based services within e-learning platforms, such as collaborative editing and advanced data visualizations. However, among state-of-the-art solutions, no one is able to tackle the problem in a comprehensive way. In this extended abstract, we discuss ALDO (Active e-Learning by DOing), a novel, advanced digital framework supporting integrated facilities for effective, active e-learning. ALDO includes an active repository for collecting, sharing, retrieving, and analyzing relevant materials, collaborative editing services, an e-learning platform, and advanced visualization tools to inspect the spatial and temporal dimension of specific data contexts. All such services and tools are made available to teachers/students through a dedicated Web portal. Although the present research was carried out within the H2020 Project DETECt (Detecting Transcultural Identity in European Popular Crime Narratives), by focusing on the specific data context of European crime narrative, the generality of the framework makes it suitable for any type of educational task. The design and creation of above tools and services, together with their uses, are presented and discussed through a series of real examples taken from DETECt

    Approaching Space Time Through Velocity in Doubly Special Relativity

    Full text link
    We discuss the definition of velocity as dE/dp, where E,p are the energy and momentum of a particle, in Doubly Special Relativity (DSR). If this definition matches dx/dt appropriate for the space-time sector, then space-time can in principle be built consistently with the existence of an invariant length scale. We show that, within different possible velocity definitions, a space-time compatible with momentum-space DSR principles can not be derived.Comment: 11 pages, no figures, minor changes, references added, final version to appear in PR

    Hygro-thermo-chemo-mechanical coupled discrete model for the self-healing in Ultra High Performance Concrete

    Get PDF
    Reliable durability predictions and design for advanced cement-based materials cannot disregard the modelling of their inherent self-healing capability. A discrete meso-scale model to simulate the recovery in water tightness, stiffness and strength induced by the (stimulated) autogenous healing of cracks for Ultra High Performance Concrete is presented. In this paper the model is implemented into the numerical framework of the Multiphysics-Lattice Discrete Particle Model (M-LDPM), resulting from the coupling of the Hygro-Thermo-Chemical (HTC) model and Lattice Discrete Particle Model (LDPM). Consistently with experimental evidence, the development of the self-repairing process is modelled as consisting of two independent stages: (a) the healing of matrix cracks, affecting both moisture permeability and fracture strength in the cracked state, and (b) the recovery in terms of fibre bridging action, relying on the adhesion between the healing products and the walls of the tunnel cracks which form during the fibre debonding process. This research activity is framed into the Horizon 2020 project ReSHEALience (GA 760824)

    Numerical modelling via a coupled discrete approach of the autogenous healing for Fibre-Reinforced Cementitious Composites (FRCCs)

    Get PDF
    Aiming to predict long-term performance of advanced cement-based materials and design more durable structures, a reliable modelling of the autogenous healing of cementitious materials is crucial. A dis-crete model for the regain in terms of water tightness, stiffness and strength induced by the autogenous and/or “stimulate" autogenous healing was recently proposed for ordinary plain concrete. The modelling proposal stemmed from the coupling of two models, namely the Hygro-Thermo-Chemical (HTC) model, on one side,and the Lattice Discrete Particle Model (LDPM), on the other side, resulting in the Multiphysics-Lattice Discrete Particle Model (M-LDPM). Being this approach not customised only for ordinary concrete, but for the whole broad category of cementitious materials, in this paper, its application to Fibre-Reinforced Cementitious Composites is presented. To accurately simulate what has been experimentally observed so far, the mechanical model is updated to also include the self-healing of the tunnel cracks at the fibre-matrix interfaces. Therefore,the self-repairing process is modelled to develop on two independent stages: (a) matrix cracks healing, and(b) fibre bridging action restoring. This research activity is part of the modelling tasks framed into the project ReSHEALience, funded from the European Union’s Horizon 2020 Research and Innovation Programme

    Functional Principal components direction to cluster earthquake waveforms

    Get PDF
    Looking for curves similarity could be a complex issue characterized by subjective choices related to continuous transformations of observed discrete data (Chiodi, 1989). In this paper we combine the aim of finding clusters from a set of individual curves to the functional nature of data, applying a variant of a k-means algorithm based on the principal component rotation of data. We apply a classical clustering method to rotated data, according to the direction of maximum variance. A k-means clustering algorithm based on PCA rotation of data is proposed, as an alternative to methods that require previous interpolation of data based on splines or linear fitting (Garc´ıa- Escudero and Gordaliza (2005), Tarpey (2007), Sangalli et al. (2008)

    Potential rockfalls and analysis of slope dynamics in the palatine archaeological area (Rome, Italy)

    Get PDF
    The Palatine Hill is among the main archaeological sites of Roman antiquity. Today, this place requires continuous care for its safeguarding and conservation. Among the main problems, slope instabilities threaten the southwestern border of the hill flanked by the Velabrum Valley, as also testified by historical documents. The upper part of the investigated slope is characterized by Middle Pleistocene red-brownish tuffs known as "Tufo Lionato". The rock mass is affected by two jointing belts featuring the slope edge and its internal portion with different joint frequency and distribution. The analysis of the geometric relationship between the joint systems and the slope attitude evidenced possible planar sliding and toppling failure mechanisms on the exposed tuff cliffs. Potential rock block failures threatening the local cultural heritage were contrasted with preliminary works for site remediation. In addition, stress-strain numerical modelling verified the hypothesis of a tensile origin for the jointing belts, suggested by fracture characteristics and orientation. A first modelling was limited to the southwestern edge of the Palatine Hill and analysed the present stress-strain condition of the slope, proving the inconsistency with the observed deformation. A second modelling was extended to the Palatine-Velabrum slope-to-valley system to consider the role played by the geomorphological evolution of the area on the local slope dynamics during the late Pleistocene-Holocene. Results demonstrate how original conditions of slope instability, deformation and retreat along the Palatine western edge were determined by deep valley incision, and controlled by deformability contrasts within the slope. Slope instability influenced the site occupation and development during the Roman civilization, as also indicated by the remnants of retaining walls of different ages at the slope base
    • …
    corecore