354 research outputs found

    A systematic review of the effect of therapeutic drug monitoring on patient health outcomes during treatment with penicillins.

    Get PDF
    Background Dosing regimens guided by therapeutic drug monitoring (TDM) may be able to improve penicillin exposure in patients, which could result in improved patient health outcomes. Objectives This systematic review aims to describe the impact penicillin TDM has on health outcomes, including antimicrobial resistance (AMR). Methods Studies measuring penicillins in patient samples that adjusted regimens according to the result, and reported health outcomes were selected. Study bias was assessed according to study type. Included study characteristics were tabulated and described by narrative synthesis. Results Three randomized controlled trials (RCTs), 16 cohort studies, and 9 case studies were included. No RCTs showed statistically significant improvements in health outcomes. Five cohort studies showed improvement in at least one health outcome associated with target attainment. However, there was a high risk of bias in all studies for health outcomes. One study assessed the impact of penicillin TDM on AMR and found that improved target attainment was associated with suppression of resistance. No studies found a detrimental effect of penicillin TDM. Conclusions There is little evidence to suggest that TDM improves health outcomes, however neither health outcomes nor impact on AMR were adequately addressed. Variations in TDM implementation meant that a meta-analysis was not suitable. Penicillin TDM needs standardization, however there is currently no clear evidence of optimal conditions. Suitably powered studies are required to resolve the ambiguity surrounding the impact of TDM on clinical outcomes, including AMR. Further, standardized protocols and concentration targets need to be identified for TDM to be implemented successfully

    Therapeutic drug monitoring of immunotherapies with novel Affimer–NanoBiT sensor construct

    Get PDF
    Concentration–therapeutic efficacy relationships have been observed for several therapeutic monoclonal antibodies (TmAb), where low circulating levels can result in ineffective treatment and high concentrations can cause adverse reactions. Rapid therapeutic drug monitoring (TDM) of TmAb drugs would provide the opportunity to adjust an individual patient's dosing regimen to improve treatment results. However, TDM for immunotherapies is currently limited to centralised testing methods with long sample-collection to result timeframes. Here, we show four point-of-care (PoC) TmAb biosensors by combining anti-idiotypic Affimer proteins and NanoBiT split luciferase technology at a molecular level to provide a platform for rapid quantification (<10 minutes) for four clinically relevant TmAb (rituximab, adalimumab, ipilimumab and trastuzumab). The rituximab sensor performed best with 4 pM limit of detection (LoD) and a quantifiable range between 8 pM–2 nM with neglectable matrix effects in serum up to 1%. After dilution of serum samples, the resulting quantifiable range for all four sensors falls within the clinically relevant range and compares favourably with the sensitivity and/or time-to-result of current ELISA standards. Further development of these sensors into a PoC test may improve treatment outcome and quality of life for patients receiving immunotherapy

    A plot-based analysis of the vegetation of the Northern Territory, Australia: a first assessment within the International Vegetation Classification framework

    Get PDF
    Aims: To develop an interim classification of the vegetation of the Northern Territory at the International Vegetation Classification (IVC) division (level 4) and macrogroup (level 5) levels. These types are produced to assist in the development of an integrated nationwide plot and floristically based classification of Australia allowing integration within a global perspective. Study Area: The Northern Territory of Australia covers an area of 1.42 million square kilometres, almost 20% of Australia’s land mass. It comprises three distinct climatic zones including tropical, subtropical and arid vegetation types. Methods: We used collated vegetation data held by two organisations: the Northern Territory Government, Department of Environment, Parks and Water Security and the Terrestrial Ecosystem Research Network (a total of 45,710 plots used). We applied semi-supervised quantitative classification methods to define vegetation types at the IVC division and macrogroup levels. Analyses used kR-CLUSTER methods on presence/absence data. Macrogroups were characterised by taxa with the highest frequency of occurrence across plots. Additional analyses were conducted (cluster) to elucidate interrelationships between macrogroups and to assist in the assessment of division level typology. Results: We propose 21 macrogroups and place these within higher thematic levels of the IVC. Conclusions: We found that the IVC hierarchy and associated standard procedures and protocols provide a useful classification tool for Australian ecosystems. The divisions and macrogroups provide a valid framework for subsequent analysis of Northern Territory vegetation types at the detailed levels of the IVC. A consistent typology for the Northern Territory (and hopefully in future, for all of Australia) has numerous benefits, in that they can be used for various applications using a well-structured, systematic and authoritative description and classification that is placed in a continental and global context, readily enabling the one system to be used in studies from the local to global level. Taxonomic reference: Northern Territory Herbarium (2022). Abbreviations: DVT = Definitive Vegetation Type; IVC = International Vegetation Classification; nMDS = non-metric multidimensional scaling; NT = Northern Territory; NTVSD = Northern Territory Vegetation Site Database; NVIS = National Vegetation Information System; WA = Western Australia

    An optimised saliva collection method to produce high-yield, high-quality RNA for translational research

    Get PDF
    Saliva represents an ideal matrix for diagnostic biomarker development as it is readily available and requires no invasive collection procedures. However, salivary RNA is labile and rapidly degrades. Previous attempts to isolate RNA from saliva have yielded poor quality and low concentrations. Here we compare collection and processing methods and propose an approach for future studies. The effects of RNA stabilisers, storage temperatures, length of storage and fasting windows were investigated on pooled saliva samples from healthy volunteers. Isolated RNA was assessed for concentration and quality. Bacterial growth was investigated through RT-PCR using bacterial and human primers. Optimal conditions were implemented and quality controlled in a clinical setting. The addition of RNAlater increased mean RNA yield from 4912 ng/μl to 15,473 ng and RNA Integrity Number (RIN) from 4.5 to 7.0. No significant changes to RNA yield were observed for storage at room temperature beyond 1 day or at -80 °C. Bacterial growth did not occur in samples stored at ambient temperature for up to a week. There was a trend towards higher RNA concentration when saliva was collected after overnight fasting but no effect on RIN. In the clinic, RNA yields of 6307 ng and RINs of 3.9 were achieved, improving on previous reports. The method we describe here is a robust, clinically feasible saliva collection method using preservative that gives high concentrations and improved RINs compared to saliva collected without preservative

    Kaposi's Sarcoma-Associated Herpesvirus ORF45 Interacts with Kinesin-2 Transporting Viral Capsid-Tegument Complexes along Microtubules

    Get PDF
    Open reading frame (ORF) 45 of Kaposi's sarcoma-associated herpesvirus (KSHV) is a tegument protein. A genetic analysis with a null mutant suggested a possible role for this protein in the events leading to viral egress. In this study, ORF45 was found to interact with KIF3A, a kinesin-2 motor protein that transports cargoes along microtubules to cell periphery in a yeast two-hybrid screen. The association was confirmed by both co-immunoprecipitation and immunoflorescence approaches in primary effusion lymphoma cells following virus reactivation. ORF45 principally mediated the docking of entire viral capsid-tegument complexes onto the cargo-binding domain of KIF3A. Microtubules served as the major highways for transportation of these complexes as evidenced by drastically reduced viral titers upon treatment of cells with a microtubule depolymerizer, nocodazole. Confocal microscopic images further revealed close association of viral particles with microtubules. Inhibition of KIF3A–ORF45 interaction either by the use of a headless dominant negative (DN) mutant of KIF3A or through shRNA-mediated silencing of endogenous KIF3A expression noticeably decreased KSHV egress reflecting as appreciable reductions in the release of extracellular virions. Both these approaches, however, failed to impact HSV-1 egress, demonstrating the specificity of KIF3A in KSHV transportation. This study thus reports on transportation of KSHV viral complexes on microtubules by KIF3A, a kinesin motor thus far not implicated in virus transportation. All these findings shed light on the understudied but significant events in the KSHV life cycle, delineating a crucial role of a KSHV tegument protein in cellular transport of viral particles

    A new method for determination of varicella-zoster virus immunoglobulin G avidity in serum and cerebrospinal fluid

    Get PDF
    BACKGROUND: Avidity determination of antigen-specific immunoglobulin G (IgG) antibodies is an established serological method to differentiate acute from past infections. In order to compare the avidity of varicella-zoster virus (VZV) IgG in pairs of serum and cerebrospinal fluid (CSF) samples, we developed a new technique of avidity testing, the results of which are not influenced by the concentration of specific IgG. METHODS: The modifications introduced for the new VZV IgG avidity method included the use of urea hydrogen peroxide as denaturing reagent, the adaptation of the assay parameters in order to increase the sensitivity for the detection of low-level VZV IgG in CSF, and the use of a new calculation method for avidity results. The calculation method is based on the observation that the relationship between the absorbance values of the enzyme immunoassays with and without denaturing washing step is linear. From this relationship, a virtual absorbance ratio can be calculated. To evaluate the new method, a panel of serum samples from patients with acute and past VZV infection was tested as well as pairs of serum and CSF. RESULTS: For the serum panel, avidity determination with the modified assay gave results comparable to standard avidity methods. Based on the coefficient of variation, the new calculation method was superior to established methods of avidity calculation. CONCLUSIONS: The new avidity method permits a meaningful comparison of VZV IgG avidity in serum and CSF and should be of general applicability for easy determination of avidity results, which are not affected by the concentration of specific IgG

    Comparing counselling alone versus counselling supplemented with guided use of a well-being app for university students experiencing anxiety or depression (CASELOAD): protocol for a feasibility trial.

    Get PDF
    BACKGROUND: University counselling services face a unique challenge to offer short-term therapeutic support to students presenting with complex mental health needs and in a setting which suits the academic timetable. The recent availability of mobile phone applications (apps) offers an opportunity to supplement face-to-face therapy and has the potential to reach a wider audience, maintain engagement between therapy sessions, and enhance therapeutic outcomes. The present study, entitled Counselling plus Apps for Students Experiencing Levels of Anxiety or Depression (CASELOAD), aims to explore the feasibility of supplementing counselling with guided use of a well-being app. METHODS/DESIGN: Forty help-seeking university students (aged 18 years and over) with symptoms of moderate anxiety or depression will be recruited from a University Counselling Service (UCS) in the United Kingdom (UK). Participants will be recruited via counsellors who provide the initial clinical assessment and who determine treatment allocation to one of two treatments on the basis of client-treatment fit. The two conditions comprise (1) counselling alone (treatment as usual/TAU) or (2) counselling supplemented with guided use of a well-being app (enhanced intervention). Trained counsellors will deliver up to six counselling sessions in each treatment arm across a 6-month period, and the session frequency will be decided by client-counsellor discussion. Assessments will occur at baseline, every counselling session, post-intervention (3 months after consent) and follow-up (6 months after consent). Assessments will include clinical measures of anxiety, depression, psychological functioning, specific mental health concerns (e.g. academic distress and substance misuse), resilience and therapeutic alliance. The usage, acceptability, feasibility and potential implications of combining counselling with guided use of the well-being app will be assessed through audio recordings of counselling sessions, telephone interviews with participants, focus groups with counsellors and counsellor notes. DISCUSSION: This study will inform the design of a randomised pilot trial and a definitive trial which aim to improve therapy engagement, reduce dropout and enhance clinical outcomes of student counselling. TRIAL REGISTRATION: ISRCTN55102899

    Global shortage of technical agars: back to basics (resource management)

    Get PDF
    Bacteriological and technical agars are in short supply with potential consequences for research, public health, and clinical labs around the world. To diagnose bottlenecks and sustainability problems that may be putting the industry at risk, we analyzed the available time series for the global landings of Gelidium, the most important raw materials for the industry. Data on the harvest of Gelidium spp. have been reported since1912, when Japan was the only producer. After World War II the diversification of harvested species and producing countries resulted in a strong increase in global landings. Maximum harvest yields of almost 60,000 t year(-1) in the 1960s were sustained until the 1980s, after which landings decreased continuously to the present. In the 2010s, a reduction in the global production to about 25,000 t year(-1) was observed, which was lower than the yields of the 1950s. Landings by important producers such as Japan, Korea, Spain, and Portugal have collapsed. This is the ultimate cause of the present shortage of bacteriological and technical agars. However, an important factor at play is the concentration of the global landings of Gelidium in Morocco, as its relative contribution increased from 23% in the 1960s to the present 82%. Two specific bottlenecks were identified: restrictive export quotas of unprocessed Gelidium in favor of the national agar industry and resource management regulations that were apparently not enforced resulting in over-harvesting and resource decline. The global industry may well be dependent on resource management basics. Simple harvest statistics must be gathered such as the harvest effort and the variation of harvest yields along the harvest season. We discuss how this information is fundamental to manage the resource. The available harvest statistics are generally poor and limited and vary significantly among different sources of data. Probable confusions between dry and wet weight reporting and poor discrimination of the species harvested need to be resolved
    corecore