1,944 research outputs found

    National Income, Strategic Discontinuity, and Converging Trajectories of Macroeconomic Policy Initiatives: An Empirical Study of China

    Get PDF
    The framework of converging trajectories of macroeconomic policy initiatives is employed in the context of strategic discontinuity to study the national income of an advancing economy. A model of systemic changes based upon an equation of production and consumption is presented. In this study of the Chinese economy of 1980-2014, over time, the dynamics of policy imbalance is found to decrease considerably, which is consistent with the decreasing trend of shrinking the differences among the impact coefficients of government consumption, private investment, and private consumption

    Inspiration from Intersecting D-branes: General Supersymmetry Breaking Soft Terms in No-Scale F{\cal F}-SU(5)SU(5)

    Full text link
    Motivated by D-brane model building, we evaluate the F\cal{F}-SU(5)SU(5) model with additional vector-like particle multiplets, referred to as flippons, within the framework of No-Scale Supergravity with non-vanishing general supersymmetry breaking soft terms at the string scale. The viable phenomenology is uncovered by applying all current experimental constraints, including but not limited to the correct light Higgs boson mass, WMAP and Planck relic density measurements, and several LHC constraints on supersymmetric particle spectra. Four interesting regions of the parameter space arise, as well as mixed scenarios, given by: (i) light stop coannihilation; (ii) pure Higgsino dark matter; (iii) Higgs funnel; and (iv) light stau coannihilation. All regions can generate the observed value of the relic density commensurate with a 125 GeV light Higgs boson mass, with the exception of the relatively small relic density value for the pure Higgsino lightest supersymmetric particle (LSP). This work is concluded by gauging the model against present LHC search constraints and derivation of the final states observable at the LHC for each of these scenarios.Comment: 13 pages, 4 Figures, 4 Table

    General No-Scale Supergravity: An F{\cal F}-SU(5)SU(5) Tale

    Full text link
    We study the grand unification model flipped SU(5)SU(5) with additional vector-like particle multiplets, or F{\cal F}-SU(5)SU(5) for short, in the framework of General No-Scale Supergravity. In our analysis we allow the supersymmetry (SUSY) breaking soft terms to be generically non-zero, thereby extending the phenomenologically viable parameter space beyond the highly constrained one-parameter version of F{\cal F}-SU(5)SU(5). In this initial inquiry, the mSUGRA/CMSSM SUSY breaking terms are implemented. We find this easing away from the vanishing SUSY breaking terms enables a more broad mass range of vector-like particles, dubbed flippons, including flippons less than 1 TeV that could presently be observed at the LHC2, as well as a lighter gluino mass and SUSY spectrum overall. This presents heightened odds that the General No-Scale F{\cal F}-SU(5)SU(5) viable parameter space can be probed at the LHC2. The phenomenology comprises both bino and higgsino dark matter, including a Higgs funnel region. Particle states emerging from the SUSY cascade decays are presented to experimentally distinguish amongst the diverse phenomenological regions.Comment: 8 pages, 4 figures, 4 tables; Version accepted for publication in Physics Letters

    Targeted antimicrobial therapy against Streptococcus mutans establishes protective non-cariogenic oral biofilms and reduces subsequent infection.

    Get PDF
    AimDental biofilms are complex communities composed largely of harmless bacteria. Certain pathogenic species including Streptococcus mutans (S. mutans) can become predominant when host factors such as dietary sucrose intake imbalance the biofilm ecology. Current approaches to control S. mutans infection are not pathogen-specific and eliminate the entire oral community along with any protective benefits provided. Here, we tested the hypothesis that removal of S. mutans from the oral community through targeted antimicrobial therapy achieves protection against subsequent S. mutans colonization.MethodologyControlled amounts of S. mutans were mixed with S. mutans-free saliva, grown into biofilms and visualized by antibody staining and cfu quantization. Two specifically-targeted antimicrobial peptides (STAMPs) against S. mutans were tested for their ability to reduce S. mutans biofilm incorporation upon treatment of the inocula. The resulting biofilms were also evaluated for their ability to resist subsequent exogenous S. mutans colonization.ResultsS. mutans colonization was considerably reduced ( +/- 0.4 fold reduction, P=0.01) when the surface was preoccupied with saliva-derived biofilms. Furthermore, treatment with S. mutans-specific STAMPs yielded S. mutans-deficient biofilms with significant protection against further S. mutans colonization (5 minutes treatment: 38 +/- 13 fold reduction P=0.01; 16 hours treatment: 96 +/- 28 fold reduction P=0.07).ConclusionS. mutans infection is reduced by the presence of existing biofilms. Thus maintaining a healthy or "normal" biofilm through targeted antimicrobial therapy (such as the STAMPs) could represent an effective strategy for the treatment and prevention of S. mutans colonization in the oral cavity and caries progression

    System for Automated Calibration of Vector Modulators

    Get PDF
    Vector modulators are used to impose baseband modulation on RF signals, but non-ideal behavior limits the overall performance. The non-ideal behavior of the vector modulator is compensated using data collected with the use of an automated test system driven by a LabVIEW program that systematically applies thousands of control-signal values to the device under test and collects RF measurement data. The technology innovation automates several steps in the process. First, an automated test system, using computer controlled digital-to-analog converters (DACs) and a computer-controlled vector network analyzer (VNA) systematically can apply different I and Q signals (which represent the complex number by which the RF signal is multiplied) to the vector modulator under test (VMUT), while measuring the RF performance specifically, gain and phase. The automated test system uses the LabVIEW software to control the test equipment, collect the data, and write it to a file. The input to the Lab - VIEW program is either user-input for systematic variation, or is provided in a file containing specific test values that should be fed to the VMUT. The output file contains both the control signals and the measured data. The second step is to post-process the file to determine the correction functions as needed. The result of the entire process is a tabular representation, which allows translation of a desired I/Q value to the required analog control signals to produce a particular RF behavior. In some applications, corrected performance is needed only for a limited range. If the vector modulator is being used as a phase shifter, there is only a need to correct I and Q values that represent points on a circle, not the entire plane. This innovation has been used to calibrate 2-GHz MMIC (monolithic microwave integrated circuit) vector modulators in the High EIRP Cluster Array project (EIRP is high effective isotropic radiated power). These calibrations were then used to create correction tables to allow the commanding of the phase shift in each of four channels used as a phased array for beam steering of a Ka-band (32-GHz) signal. The system also was the basis of a breadboard electronic beam steering system. In this breadboard, the goal was not to make systematic measurements of the properties of a vector modulator, but to drive the breadboard with a series of test patterns varying in phase and amplitude. This is essentially the same calibration process, but with the difference that the data collection process is oriented toward collecting breadboard performance, rather than the measurement of output from a network analyzer

    DNA builds and strengthens the extracellular matrix in Myxococcus xanthus biofilms by interacting with exopolysaccharides.

    Get PDF
    One intriguing discovery in modern microbiology is the extensive presence of extracellular DNA (eDNA) within biofilms of various bacterial species. Although several biological functions have been suggested for eDNA, including involvement in biofilm formation, the detailed mechanism of eDNA integration into biofilm architecture is still poorly understood. In the biofilms formed by Myxococcus xanthus, a Gram-negative soil bacterium with complex morphogenesis and social behaviors, DNA was found within both extracted and native extracellular matrices (ECM). Further examination revealed that these eDNA molecules formed well organized structures that were similar in appearance to the organization of exopolysaccharides (EPS) in ECM. Biochemical and image analyses confirmed that eDNA bound to and colocalized with EPS within the ECM of starvation biofilms and fruiting bodies. In addition, ECM containing eDNA exhibited greater physical strength and biological stress resistance compared to DNase I treated ECM. Taken together, these findings demonstrate that DNA interacts with EPS and strengthens biofilm structures in M. xanthus

    Multichannel Phase and Power Detector

    Get PDF
    An electronic signal-processing system determines the phases of input signals arriving in multiple channels, relative to the phase of a reference signal with which the input signals are known to be coherent in both phase and frequency. The system also gives an estimate of the power levels of the input signals. A prototype of the system has four input channels that handle signals at a frequency of 9.5 MHz, but the basic principles of design and operation are extensible to other signal frequencies and greater numbers of channels. The prototype system consists mostly of three parts: An analog-to-digital-converter (ADC) board, which coherently digitizes the input signals in synchronism with the reference signal and performs some simple processing; A digital signal processor (DSP) in the form of a field-programmable gate array (FPGA) board, which performs most of the phase- and power-measurement computations on the digital samples generated by the ADC board; and A carrier board, which allows a personal computer to retrieve the phase and power data. The DSP contains four independent phase-only tracking loops, each of which tracks the phase of one of the preprocessed input signals relative to that of the reference signal (see figure). The phase values computed by these loops are averaged over intervals, the length of which is chosen to obtain output from the DSP at a desired rate. In addition, a simple sum of squares is computed for each channel as an estimate of the power of the signal in that channel. The relative phases and the power level estimates computed by the DSP could be used for diverse purposes in different settings. For example, if the input signals come from different elements of a phased-array antenna, the phases could be used as indications of the direction of arrival of a received signal and/or as feedback for electronic or mechanical beam steering. The power levels could be used as feedback for automatic gain control in preprocessing of incoming signals. For another example, the system could be used to measure the phases and power levels of outputs of multiple power amplifiers to enable adjustment of the amplifiers for optimal power combining
    • …
    corecore