192 research outputs found

    Quantum computers in phase space

    Full text link
    We represent both the states and the evolution of a quantum computer in phase space using the discrete Wigner function. We study properties of the phase space representation of quantum algorithms: apart from analyzing important examples, such as the Fourier Transform and Grover's search, we examine the conditions for the existence of a direct correspondence between quantum and classical evolutions in phase space. Finally, we describe how to directly measure the Wigner function in a given phase space point by means of a tomographic method that, itself, can be interpreted as a simple quantum algorithm.Comment: 16 pages, 7 figures, to appear in Phys Rev

    Test of quantum nonlocality for cavity fields

    Full text link
    There have been studies on formation of quantum-nonlocal states in spatially separate two cavities. We suggest a nonlocal test for the field prepared in the two cavities. We couple classical driving fields with the cavities where a nonlocal state is prepared. Two independent two-level atoms are then sent through respective cavities to interact off-resonantly with the cavity fields. The atomic states are measured after the interaction. Bell's inequality can be tested by the joint probabilities of two-level atoms being in their excited or ground states. We find that quantum nonlocality can also be tested using a single atom sequentially interacting with the two cavities. Potential experimental errors are also considered. We show that with the present experimental condition of 5% error in the atomic velocity distribution, the violation of Bell's inequality can be measured.Comment: 14pages, 2figures. accepted to Phys. Rev.

    Measuring the elements of the optical density matrix

    Get PDF
    Most methods for experimentally reconstructing the quantum state of light involve determining a quasiprobability distribution such as the Wigner function. In this paper we present a scheme for measuring individual density matrix elements in the photon number state representation. Remarkably, the scheme is simple, involving two beam splitters and a reference field in a coherent state.Comment: 6 pages and 1 figur

    Conditional large Fock state preparation and field state reconstruction in Cavity QED

    Get PDF
    We propose a scheme for producing large Fock states in Cavity QED via the implementation of a highly selective atom-field interaction. It is based on Raman excitation of a three-level atom by a classical field and a quantized field mode. Selectivity appears when one tunes to resonance a specific transition inside a chosen atom-field subspace, while other transitions remain dispersive, as a consequence of the field dependent electronic energy shifts. We show that this scheme can be also employed for reconstructing, in a new and efficient way, the Wigner function of the cavity field state.Comment: 4 Revtex pages with 3 postscript figures. Submitted for publicatio

    Decoherence control in microwave cavities

    Full text link
    We present a scheme able to protect the quantum states of a cavity mode against the decohering effects of photon loss. The scheme preserves quantum states with a definite parity, and improves previous proposals for decoherence control in cavities. It is implemented by sending single atoms, one by one, through the cavity. The atomic state gets first correlated to the photon number parity. The wrong parity results in an atom in the upper state. The atom in this state is then used to inject a photon in the mode via adiabatic transfer, correcting the field parity. By solving numerically the exact master equation of the system, we show that the protection of simple quantum states could be experimentally demonstrated using presently available experimental apparatus.Comment: 13 pages, RevTeX, 8 figure

    Gene discovery in the hamster: a comparative genomics approach for gene annotation by sequencing of hamster testis cDNAs

    Get PDF
    BACKGROUND: Complete genome annotation will likely be achieved through a combination of computer-based analysis of available genome sequences combined with direct experimental characterization of expressed regions of individual genomes. We have utilized a comparative genomics approach involving the sequencing of randomly selected hamster testis cDNAs to begin to identify genes not previously annotated on the human, mouse, rat and Fugu (pufferfish) genomes. RESULTS: 735 distinct sequences were analyzed for their relatedness to known sequences in public databases. Eight of these sequences were derived from previously unidentified genes and expression of these genes in testis was confirmed by Northern blotting. The genomic locations of each sequence were mapped in human, mouse, rat and pufferfish, where applicable, and the structure of their cognate genes was derived using computer-based predictions, genomic comparisons and analysis of uncharacterized cDNA sequences from human and macaque. CONCLUSION: The use of a comparative genomics approach resulted in the identification of eight cDNAs that correspond to previously uncharacterized genes in the human genome. The proteins encoded by these genes included a new member of the kinesin superfamily, a SET/MYND-domain protein, and six proteins for which no specific function could be predicted. Each gene was expressed primarily in testis, suggesting that they may play roles in the development and/or function of testicular cells

    Quantum inference of states and processes

    Get PDF
    The maximum-likelihood principle unifies inference of quantum states and processes from experimental noisy data. Particularly, a generic quantum process may be estimated simultaneously with unknown quantum probe states provided that measurements on probe and transformed probe states are available. Drawbacks of various approximate treatments are considered.Comment: 7 pages, 4 figure

    Squeezing arbitrary cavity-field states through their interaction with a single driven atom

    Full text link
    We propose an implementation of the parametric amplification of an arbitrary radiation-field state previously prepared in a high-Q cavity. This nonlinear process is accomplished through the dispersive interactions of a single three-level atom (fundamental |g>, intermediate |i>, and excited |e> levels) simultaneously with i) a classical driving field and ii) a previously prepared cavity mode whose state we wish to squeeze. We show that, in the adiabatic approximantion, the preparation of the initial atomic state in the intermediate level |i> becomes crucial for obtaing the degenerated parametric amplification process.Comment: Final published versio

    Quantum computing in optical microtraps based on the motional states of neutral atoms

    Get PDF
    We investigate quantum computation with neutral atoms in optical microtraps where the qubit is implemented in the motional states of the atoms, i.e., in the two lowest vibrational states of each trap. The quantum gate operation is performed by adiabatically approaching two traps and allowing tunneling and cold collisions to take place. We demonstrate the capability of this scheme to realize a square-root of swap gate, and address the problem of double occupation and excitation to other unwanted states. We expand the two-particle wavefunction in an orthonormal basis and analyze quantum correlations throughout the whole gate process. Fidelity of the gate operation is evaluated as a function of the degree of adiabaticity in moving the traps. Simulations are based on rubidium atoms in state-of-the-art optical microtraps with quantum gate realizations in the few tens of milliseconds duration range.Comment: 11 pages, 7 figures, for animations of the gate operation, see http://www.itp.uni-hannover.de/~eckert/na/index.htm

    Non-canonical Hedgehog signaling mediates profibrotic hematopoiesis-stroma crosstalk in myeloproliferative neoplasms.

    Get PDF
    The role of hematopoietic Hedgehog signaling in myeloproliferative neoplasms (MPNs) remains incompletely understood despite data suggesting that Hedgehog (Hh) pathway inhibitors have therapeutic activity in patients. We aim to systematically interrogate the role of canonical vs. non-canonical Hh signaling in MPNs. We show that Gli1 protein levels in patient peripheral blood mononuclear cells (PBMCs) mark fibrotic progression and that, in murine MPN models, absence of hematopoietic Gli1, but not Gli2 or Smo, significantly reduces MPN phenotype and fibrosis, indicating that GLI1 in the MPN clone can be activated in a non-canonical fashion. Additionally, we establish that hematopoietic Gli1 has a significant effect on stromal cells, mediated through a druggable MIF-CD74 axis. These data highlight the complex interplay between alterations in the MPN clone and activation of stromal cells and indicate that Gli1 represents a promising therapeutic target in MPNs, particularly that Hh signaling is dispensable for normal hematopoiesis
    corecore