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Quantum computing in optical microtraps based on the motional states of neutral atoms
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We investigate quantum computation with neutral atoms in optical microtraps where the qubit is imple-
mented in the motional states of the atoms, i.e., in the two lowest vibrational states of each trap. The quantum
gate operation is performed by adiabatically approaching two traps and allowing tunneling and cold collisions
to take place. We demonstrate the capability of this scheme to realize a square root of swap gate, and address
the problem of double occupation and excitation to other unwanted states. We expand the two-particle wave
function in an orthonormal basis and analyze quantum correlations throughout the whole gate process. Fidelity
of the gate operation is evaluated as a function of the degree of adiabaticity in moving the traps. Simulations
are based on rubidium atoms in state-of-the-art optical microtraps with quantum gate realizations in the few
tens of milliseconds duration range.
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[. INTRODUCTION each site. In addition, the possibility to store and detect
single atoms in optical dipole traps has been repdri&dl

The development of tools to prepare, manipulate and With the demonstration of single-qubit gates being
measure the quantum state of a physical system represersisaight forward, what remains to be experimentally demon-
one of the great challenges of modern science and, in pastrated is the capability of these optical microtraps to per-
ticular, it is essential for applications in quantum informationform two-qubit quantum gates. The most prominent ex-
processing such as quantum computing. At present a fe@mples of such gates include the controllenlr (CNOT) gate,
systems have been identified that should permit quanturthe phase gate and th&swap gate[4,23]. The latter trans-
computation: molecules in the context of NMR), ion traps  forms stateg0)|1) and|1)|0), written in the computational
[2], cavity QED with photons and atoni8], solid-state de- basis, to maximally entangled states, while leavjay|0)
vices such as quantum dg#—6], and trapped neutral atoms and|1)|1) unaffected, in such a way that after the successive
[7-11]. For Rydberg atoms in high Q cavities, the engineer-application of two /SWAP gates the states of the qubits are
ing of entangled states and the implementation of quanturinterchanged. Each one of these two-qubit gates, together
logic have been demonstratéti?], furthermore a quantum with arbitrary single-qubit operations, is universal, i.e., al-
gate has been performed between the internal and externiaws to perform any quantum algorithm. In practice, the par-
degrees of freedom of an ion in a trgi8]. In NMR systems, ticular two-qubit gate to be implemented will depend on the
quantum algorithms on a few qubits, e.g., Shor’s factoringphysical system under consideration.
algorithm, have been reporté¢d4]. With respect to neutral atoms, several different physical

Neutral atoms are promising candidates for quantum commechanisms to perform two-qubit gates have been proposed,
puting for at least two reasong) techniques of cooling and ranging from cold controlled collision§7,8] and dipole-
trapping atoms are by now very well establisHd8]; and  dipole interaction$9—11] to purely geometric quantum evo-
(i) they are comparatively less sensitive to decoherence, e.dution [24]. In the cold collisional case, a two-qubit phase
interaction with the “classical” environment. Neutral atoms gate was proposed by adiabatically approaching two {raps
can be stored and manipulated in optical lattitE8], stan-  or by instantaneous state-selective switching of the trapping
dard dipole trap$17], and microtrap$18—21]. In particular,  potentials[8]. In both cases the qubit was encoded in some
magnetic{ 18] and optical microtrap19—21] offer an inter-  internal degrees of freedom of the atoms, e.g., spin, Zeeman
esting perspective for storing and manipulating arrays of ater hyperfine levels. For cold collisions to take place the at-
oms with the eventual possibility to scale, parallelize, andoms have to be brought to close distances, such that their
miniaturize the atom optics devices needed in quantum ingquantum statistical nature has to be taken into account. A
formation processing. Moreover, optical microtraps can takeletailed study of the role of the bosonic or fermionic char-
advantage of the fact that most of the current techniques usettter of particles in the context of quantum information in
in atom optics and laser cooling are based on the opticadtomic waveguide structures has been done by Andersson
manipulation of atomg$19]. Many of the requirements for et al.[25,26].
the implementation of quantum computati®?] have been Here we address the problem of implementing a quantum
recently demonstrated in optical microtraps contairintD0  gate by adiabatically approaching two bosonic atoms, each
atoms per sit¢21], e.g., selective addressing of single trapstored in a different microtrap. In contrast to the proposals
sites, and initializing and reading out of quantum states irmentioned above, we assume the qubit to be implemented in
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J interaction mechanism. We will introduce a time-dependent

amy| ¢, t; t, orthonormal set of single-particle states for each trap that is

- _ V\—/ also orthogonal to the states of the other trap for arbitrary
distances between the two traps. These single-particle states

DA, will make it possible to expand the wave function in a set of

two-particle orthonormal states. This representation has two
important advantagesi) it allows to compute entanglement

“max throughout the whole gate process; afid it strongly re-
\/J duces the computational time required to simulate a quantum
a’f , gate operation with respect to a direct numerical integration
o =25;:'n of the Schrdinger equation for the two-particle spatial wave
t function. Finally, we will discuss the physical implementa-

tion of the qubits and its implications for the quantum gate
FIG. 1. Separation of the traps as a function of titp@ndt; are  gperations.
the approaching or separating and interaction times, respectively. At
amax atoms located in different traps do not interact, whileagg, A. Hamiltonian
tunneling and cold collisions take place. '
The Hamiltonian governing the dynamics of the two at-
the motional states of the atoms, i.e., an atom in the groundms in a time-varying particle-independent trapping poten-
or the first vibrational state of the trap represg@fsor |1),  tjal V(r,t) can be written as

respectively. Note that, as for the ion-trap case, the observa-

tion of neutral atoms cooled down to the ground and first p2 . .
vibrational states as well as superposition states in one- H=,212 om TV D +Ur—ry), (1)
i=1,

dimensional traps has been achiey@d]. To perform the

gate operation, we apply the steps outlined in Fig. 1. Initially, . > >
the two microtraps are far apart such that the interactiof!1€r€ém is the mass of the atoms; andp; are the(three-

between the two atoms is negligible. Then we adiabaticallyfimensional position and momentum operators for atoms 1
move both traps close together such that tunneling and col@nd 2, andJ(r,—r») accounts for the interaction between
controlled collisions become important. The dynamics of thisthe two atoms.

process strongly depend on the particular motional state of To simplify the problem, we take the trapping potential
the atoms and we can make use of this fact to control théhape to be time-independent alongndz directions,
interaction such that, after the eventual separation of the R

traps, the desired gate operation is realized with each trap V(r,t)=v(x,t) +vp(y) +vp(2), 2

again containing only one atom. . . N
To be more specific we consider here laser-cooled ru2nd assume much stronger confinemeny andz directions

bidium atoms stored in optical microtrafj&1], assuming than inx, such that transverse excitations can be neglected.

that each trap contains initially only one atom. We will show I fact, we will consider that both atoms are cooled down to
that the JSWAP gateis the most natural quantum gate to be they aqdz wbrgtlonal ground states and remain there du_rmg
implemented when the qubit is encoded in the motionaf!! thg mteractlon process. Epr|C|tIy,_ we take the fqllowmg
states of the atoms and interaction takes place through tu@ne-dimensional potential to describe the two microtraps
neling and cold collisions. This result applies to botfRb ~ Separated by a distanca@):

and 8'Rb, although they have negative and positive scatter- 2

ing length, respectively. In particullar, we will demonstrgte v(x,t)=%{[Ha(t)]za(—x)+[x—a(t)]20(x)},

that a quantum gate of 20 ms duration can be performed in 2

state-of-the-art optical microtraps. Very recently, Charron ()]

et al.[28] have proposed the implementation gitzase gate . . . _—
in an optical lattice with, as it is done also here, the qubitWher? wy Is the trappmg frequency in the direction, and
A(x) is the step function.

encoded in the motional states. In this case, a controlled in- The t i f the trap dist is sketched |
terference set-up was proposed to perform a high-fidelity . € temporary variation ot th€ trap distance 1S sketched in

gate with operation time of 38 ms. FI}E}. 1. Initiallyfthle trlaps are sehparatﬁd by a di;tanagag.
The paper is organized as follows. In Sec. I, we introduce! N€ Process of slowly approaching them to a minimum sepa-

the physical model. Section 1l is devoted to the implemen-2iON 22, takes a timé, and is modeled by the first quar-
tation of the JSWAP gate. In Sec. IV we discuss some prac- ter of a period of a cosine. Then we let the atoms interact for

tical considerations. And, finally, Sec. V summarizes the re@ timet; and, finally, we slowly separate the traps.
sults and presents the conclusions. For cold bosonic atoms, the dominant collisional interac-

tion is due tos-wave scattering8], which can be described
by a contact potential of the form

IIl. MODEL
In this section we will first write down the Hamiltonian U(F,—T,)= 4madh S(F1—T») 4)
for the two atoms stored in the microtraps and discuss the rore m vk
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wherea, is thes-wave scattering length of the rubidium at- (x|i), s—(—1)"(x|i)g, . The general proof is given in Ap-
oms, e.g., in87the spin tripled,= — 3698, for ®*Rb anda,  pendix A. This property obviously holds for th&), , and

= 1068, for *'Rb with a, being the Bohr radius. As long as e [y _ are constructed such that this symmetry is main-
both atoms remain in the transverse vibrational groundg; a4’
states, we can integrate out the corresponding degrees oa}

freed d obtai ttocti di ional i ; Although above we have written only four states, for all
prgt?an(:irgl[aS? obtain an efiective one-dimensional interactioly;y |ations using these orthogonalized states we will include

all states up t43), g.
U(Xy—Xz) =2aifi 0, 8(X1—Xy), (5)
C. Two-particle states
wherew,, is the transverse trapping frequency. E(®.and
(5) allow us to reduce the complexity of the problem to one
dimension.

Let us motivate the two-particle basis which we will use.
On one hand, it must satisfy bosonic statistics, i.e., the basis
states have to be symmetric under the permutation of the
particles. On the other hand the Hamiltonian of this system is
symmetric with respect to parity transformation, i.E.(x)

We will implement the qubits into the ground and first =H(—x), and therefore does not couple states of opposite
excited vibrational states of each trap, i.e., we will use theparity. For this reason we will introduce basis states with
motional states of the atoms. When the two traps are fawell-defined parity. If for this description we limit ourselves
apart, i.e.aa>1 with 1/a= JA/mo, being the position un- again to the four lowest single-particle states, then the
certainty of the ground state, these states are the enerdppsonic two-particle sector forms a ten-dimensional Hilbert
eigenstates of two displaced one-dimensional harmonic ospace. Here, we use the following notatidnr?(l))s

cillators: ®[n(2));=|m)¢n); with 1 and 2 labeling the atoms and

B. Single-particle states

\/; 1 s,t=L,R. Thus, the bosonic two-particle basis reads
— = d?(x+a)?
(X|0) g=—p& 2@ 0=, (6a) .
s - -
|00>+:_\/§(|0>L|0>R+|0>R|0>L)a (8a)
20 1
X LRz—e*E“Z(Xia)za(Xia), (6b)
1 ' 1/4
aa

1 — — - — -
|01>+:§(|0>L|1>R+|1>R|0>L_|0>R|1>L_|1>L|O>R)y
with L andR labeling the left and right trap, respectively. As (8b)
we approach the two traps, these single-particle states over-

lap and are no longer orthogonal. To numerically integrate 1 .
the Schrdinger equation and to compute entanglement 1) =—(|1)|1)r+]|1)gI1)), (80
throughout the gate process, we construct an orthonormal V2

single-particle basis for arbitrary distances of the two traps

by applying the Gram-Schmidt methdsee Appendix A If ~ . 1 = = = =
— 00) "=—(|0)_|0)_ +|0)g|0)R), 8
we denote these new single-particle states|igy with i 100 \/§(| )L10).+10)el0)r) (89
=0,1,2,3... ands=L,R then it holds(i|j);= 6;; 5. The
four states that for large distances correspond to the two 1 — = == == = =
lowest states of each trgap read P m>+:§(|0>L|1>L+|1>L|0>L_|0>R|1>R_|1>R|0>R),
£+e &€& ®9
~ 0 0 0~ So
(XO)Lr=(XO) g% +(X[O)rL—5— (73 1T
ﬁ‘1>+=E<|1>LI1>L+|1>R|1>R). (8f)
D= K11 S a0y |
LR LR™ a1 RL 2 and
42,2 - N
. _xe® b6 10)” =5 (0} [L)r+[1)rl0) +[0)al1)L +|1)L[0)r).
(X|1)rL W<X|O>L,R 5
m o (ga)
(7b) 1
where &, (a) and &, (a) are given in Egs(A5). For large rouoy:E(|O>L|O>L_|O>R|O>R)' (9b)

separation of the traps, i.@a>1, we havet," =¢ for all

i and thus théi_>L,R become the eigenstates of a single har- R I N U O
monic trap centered at a. Notice that thei), 5 states have [01) =5 (O +[1)[0)L +|0)rl D+ [1)RIO)R),

the following symmetry under parity transformation: (90
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1 — _ 1
Tﬁ>*=ﬁ<|1>Lll>L—|1>R|1>R). (9d) |1>A|0>B~|10>EE<|01>+—|01>*), (100
|1)al1)g— 1) " (10d

The notation at the left-hand side of E@8) and(9) means
the following: superscriptst or — indicate that the two- Note that the two-particle states at the right-hand side of Eq.
particle state has positive or negative parity, respectively{10) have a trivial evolution at the trapping frequen@yr
while the tilde accounts for states where, fo>1, both  multiples of if) that can be removed by including this phase
atoms are in the same trap, i.e., double-occupancy states. Itiis the definition of the single-particle states.
easy to check the symmetry of these two-particle states under We will take stateg10) as the starting set for the gate
the exchange of the atoms by making use of the parity propeperation and, after setting the initial state, we will adiabati-
erty of statedi), g discussed after Eq§7). cally realize the gate. In this adiabatic regime, if we start in
In addition it is worth to mention that in our simulations @0 €nergy eigenstate the system will follow this time-
we will consider up to eight single-particle states whichdépendent energy eigenstate during the whole gate process.
gives rise to a bosonic two-particle Hilbert space of 36 stated "® Only allowed transitions are those corresponding to
(20 states having positive parity from which 10 corresponcPtates thati) are initially degenerate in energy, and, at short
to double occupancy; and 16 states having negative paritglstances(u) become coupled via tunneling and/or cold col-
with 10 accounting for double occupanc¥inally note that ~ [1SIONS. Therefore, in order to find the most suitable gate to
the fact that we are able to expand the wave function int®€ implemented in this system, we have to identify these
this finite number of two-particle orthogonal states has alsgesonant couplings. _ _
an important advantage with respect to the time needed for FOr this aim we will first discuss the ideal case for which
the simulation of a gate operation. We have checked the adhere is no interaction between the atoms, i.e., the case where
curacy of the restriction of the simulation to this subspace by#t=0 in Ed. (5). We then have the following resonant cou-
comparing the results of the simulations to a direct numericaP'!"9s:
integration of the Schiinger equation for the two-particle

spatial wave function which is about four orders of magni- |00) " +[00) ", (113
tude slower. —~ —~

|Ol><—>|01>H|10><—>|10>H|01>, (11b

D. Physical implementation |11>+<_>|ﬁ>+, (119

We start from two well-separated traps, each containing ~ ~ ~ ~
one atom. In this situation we can neglect the bosonic naturé’here |Ol>j(1/\/§)(|01>++|01>7) and |10)=(1/12)
of the particles and forget about the symmetrizati@d].  x(|01)*—|01)"). Therefore, there is a non-negligible
Only then it is possible to speak about well-defined qubitsprobability (even if we move the two traps adiabaticaltp
and we choose to introduce labélsindB for the two qubits  have both atoms in the same trap after the gate operation.
by labeling the atom found in the left trap Byand the atom  Note that the kinetic and trapping terms of the Hamiltonian
in the right trap byB. do not directly coupld01) with |10) since they are single-
With the two traps far apart, single-qubit operations, e.g.particle Hamiltonians and, therefore, they do not allow for
a Hadamard gate, can be realized by using two laser pulses ihe simultaneously change of the motional states of both at-
a Raman configuration focused solely on one of the trapsoams. The coupling betweeh01) and |10) is mediated

The quantum gate operation between two qubits is mL_JcI{hrough the double-occupancy stat&) and|T6). Clearly,
more involved. As we approach the traps, due to tunneling, the noninteracting case, a quantum gate operation always

there will be a nonvanishing probability to find both atoms inpas to face with double occupancy that makes the problem
the same trap. Thus we can no longer distinguish the atomsq to handle.

such that bosonic statistics become important and the qubits Figures 2a) and 2b) show, for a particular parameter set,
are no longer well defined. If, however, we approach andpe final state of the system after the whole process of ap-
separate the traps in such a way that finally there is again o oaching and separating the traps as a function of the scat-
atom in each of the well-separated traps then we can attribu ring length. In Fig. @) the initial state ig01) and in (b)

(new) labelsA andB to them in the same way as before. &11)*. Although the scattering length has a constant value

These considerations suggest the following mapping Ofhat depends on the atom under consideration, it is used in
the states of the computational basis into the two-particlgy;g plot as a free parameter to illustrate the double-
basis states of Eq¢8) and (9): occupancy problem. Notice that by changing it is pos-

+ sible to tune the strength of the effective interaction poten-
041006100, (103 tial, cf. Eq. (5). Figs. 2a) and 2b) clearly show that, foa,

=0, double occupancy is indeed very important in the final
1 state of the system.
10)a|1)5—]01)=—=(|01)* +]01) "), (10b) The problem of double occupancy is naturally suppressed
\/E when one takes into account the interaction between the at-
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1.0F . ' ' ' ' ' ] end of the gate operation, std@2)* is not populated. In
@) [N~ 1 what follows, we will focus on this last possibility.

0.8 i 01> ]
N, S -——- 10> ] ll. JSWAP GATE

0.6F

I The JSwaP gate has the following effect on the states of
the computational basis:

|0)al0)g—[0)4l0)g (1339

1+i 1—i
|0>A|1>BHT|0>A|1>B+T|1>A|0>B, (13b)

1—i 1+i
|1>A|O>B—>T|O>A|1>B+ T|1>A|O>Ba (130

|1)al1)g—[1)al1)s- (130

It is straightforward to check that the successive application
of two JSWAP gates exchanges the states of the qubits, i.e.,
Uswar=U swap U swap. As it has been mentioned before,

the VSWAP gate together with single-qubit operations suffices

0 20 40 60 80 160 1é0 1410 to realize any quantum algorithi@] which is not the case
for the swap gate itself. A simple way to prove this, consists
at/ ao of showing that the universal controllesbT gate can be

obtained from\SWAP gates and single-qubit operations. In
FIG. 2. Populations of the final state of the system after adiafact, a possible sequence(isee Appendix R
batically approaching and separating the traps as a function of the
scattering length. The initial state (g) |01) and(b) |11)", respec-
tively. The parameter setting ig,=1.25<10" s, »,=4.9
X1 571, Ua=241 nm,a,,e=5, amna=1.99, w.t, =70, and
thi =69.

Ucnor=Haoa "osU swapoal yswapH o (14
whereH , ando, g are single-qubit operations. Additionally,
sequences involving single-qubit operation exclusively on
one of the qubits, e.g., only on A, can be realiféd

oms. In this case, double-occupancy states are no longer de-
generate with single-occupancy states and we can neglect the
probability to find double occupation in the final state by ) ) ) )
adiabatically moving the traps. Thus, in the presence of in- 10 Simulate the gate operation, we have numerically inte-
teraction, the resonant couplings read grate_d the tlme-d(_apendent Scdmuge( equation for _ the
Hamiltonian given in Eqs(3) and (5) with the two-particle

A. Gate simulation

|01)«|10), (12a  wave function expanded in the previously introduced two-
particle basis. Figures(8—-3(c) show the result of a/SWAP
|11) " +]02)", (12p  gate operation for a scattering length af=106 a, corre-

sponding to®Rb atoms in the spin triplet. The parameter
where [02)* = (|0}, [2)g+ |2)x|0Y, + [0}l 2}, + |2} [0)g)/  Setting is as in Fig. 2 and the initial state (& [00)", (b)
2. Notice that now the collisional interaction tefs) allows |01, and (c) |[11)*. The parameter values are chosen to
for the simultaneous change of the motional states of botheproduce the gate operation given in Eg) as well as to
atoms. The role of these couplings is clearly shown in Fig. 2suppress th¢02)" population in the outgoing state of Fig.
In Fig. 2a), where the initial state i€1), double-occupancy 3(c). Notice that states representing double occupation are
populations in the final state start to decrease and eventual§opulated at close distances for all three cases. However,
vanish as soon as the scattering length is increased. When t¢ese populations vanish after the eventual separation of the
initial state is|11)*, Fig. 2b), double occupancy also van- traps since the traps are moved adiabatically and single-
ishes as the scattering length increases, but then the popufccupancy states are not degenerate with double-occupancy
tion of state|02)* becomes important. ones.

Therefore, the coupling given in Eq12a suggests the For ®Rb with negative scattering length it is slightly
implementation of a/SWAP gate, as long as we are able to more involved to find parameters for the gate realization
suppress or control COUp'II’(g.Zb) The degeneracy between since, due to the attractive character of the interaction,
|11)" and|02)* can be broken, for instance, by taking an double-occupation states can more easily become resonant to
anharmonic trapping potential such that the vibrational fresingle-occupation states, e.,1)* with |00)". The param-
qguencies are no longer equally spaced. In addition, it is poseters must be chosen to avoid this degeneracy between
sible to adjust the interaction time in such a way that, at thelouble- and single-occupation states. Fig. 4 shows the result

042317-5



K. ECKERTet al. PHYSICAL REVIEW A 66, 042317 (2002

1.00()......... 1 00 Eommr
a
098} . ]
00>
1 ———-100>" j
002} ]

P TN TN SN T T N

06 -——-j02>" ]
~
04F 11 1> ]
~ ~
02F L o 025" ] 02F Bl R el e N 02>
S N e AN TEATEATER A
] e P S quin . N Jouin S T— 0.0 bt e AL AL NAA NN
100 -80 -60 -40 20 0 20 40 60 80 100 -120 100 -80 -80 -40 -20 0 20 40 60 80 100 120
o, t o t
H 7 7) H — . .
FIG. 3. Simulated/SWAP gate operation fof'Rb with a;= 106 FIG. 4. Simulated/SWAP gate operation fof°Rb and the fol-

ap. The rest of parameters as in Fig. 2. The initial state of thejowing parameter valueso,=1.25x10* s71, wp=1Xx10° 57,
system isa) [00) ", (b) |01), and(c) [11)". We note that fofb) the  1/4=244 nm,ana@=5, amna=1.956, w.t, =77, wt;=97.2, and
final relative phases dD1) and|10) are as in Eq(13D). a,= —369a,. The initial state of the system ig) |00)*, (b) |01),
and(c) |11)".
of a gate simulation fo®®Rb. Unlike for 8’Rb, Fig. 4a)
shows that starting frorf00)* state|01)" is populated dur- F=Tf[UPUTU\fW>PU:'m], (15
ing the gate operation. )
On the other hand, it is important to notice that the resultdvhere the average is taken over the four orthogonal pure
obtained for®’Rb (Fig. 3 can be also directly implemented Input statep from Egs.(13). Figure &a) shows for*’Rb the
in 8Rb by making use of the strong variation of the scatter-averaged fidelityF of the gate in the parameter plame
ing length in the vicinity of a magnetic-field induced Fesch-Versusami,. The rest of the parameters are as in Fig. 3.
bach resonancks0]. Clearly, the fidelity is very sensitive to the minimum distance
To check the accuracy of the previous simulations indue to the exponential dependence of tunneling at this dis-
which the two-particle wave function was expanded in a fi-tance. Note that the fidelity of the gate operation correspond-
nite set of states, we also have numerically integrated th#g to the parameters of Fig. 3 with a gate duration of 2
Schralinger equation for the two-particle spatial wave func- +ti~17 ms for ,=1.25<10* s™* is F>0.9997, corre-
tion by using an operator split method and an fast Fouriegponding to an error rate below 0.1% per gate operation .
transform(FFT) routine. Figure 5 shows the results of this An important issue is how much the gate duration can be
integration for the same parameter values as in Figg13.  decreased while maintaining a high fidelity. In Figbjthe
The snapshots give the joint-probability distributions for thegate duration is reduced by a factor of 2 which increases the
two particles for three different initial stateg) |00)*, (b) error rate by a factor of.10. I.n fact, as soon as the r_ising time
|01), and(c) |[11)*. The bosonic nature of the atoms mani- tr is decreased, nonadiabatic effects occur which in turn re-
fests in the symmetry of the joint-probability distribution Sultin the population of several unwanted states, e.g., double
along the diagonak,=X,. In (a) and (c) the final state co- Occupation, in the final state of the system. However, it could
incides with the initial one in accordance with E¢s3). In ~ be possible to use the techniques developed in Ref.to
(b) |01) evolves towards the maximally entangled sfgte  optimize the speed of the gate operation, while suppressing
+i)|01) + (1—1)|10)]/2 whose joint-probability distribution ~€Xcitations to these unwanted states.
corresponds to the donutlike shape of the last frame.
The accuracy of the simulated gate operatibnvith re-

B. Quantum correlations

spect to the perfect gate operationsysp as given by Egs. Let us consider entanglement in the context of {BeapP
(13) is computed through the averaged fidelity, i.e., gate. As already discussed the initial and, as long as double
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© »\S S FIG. 6. Averaged fldel_lty of th_e ga_te operatlon in the parameter
-5 planet, versusa,,,. The interaction time i4a) w,t;=69 and(b)
wyt;=20. The rest of the parameters as in Fig. 3.
- 4 4 4
E ® S g occupancy is suppressed, a_Iso the final sta_lte_ con_sist of well
s 0 S % g separated and thus for practical purposes distinguishable par-
a5 ticles, such that the usual notions of entanglement can be
7 used. During the gate operation the particles interact at a
S 5 5 5 short distance and their indistinguishability does not allow to
= O apply the usual concepts of entanglement because we have to
0 S @ dlstlr?gu[sh between statistical correlatlons arising from sym-
_5 metrization and quantum correlations useful in the context of
quantum information. This problem has been discussed in
B & . Refs.[6,33] for fermionic two-particle states where the con-
5 cept of Slater rank and a fermionic correlation measure was
0 derived. In Ref[6] these methods have been used to study
correlations in the context of a quantum gate operation for
= two electrons in quantum dots. They have been translated to
. bosons in Ref[34], and moreover a bosonic von Neumann
5 entropy has been defined in R¢85]. Because under the
s JSWAP operation the separable sta@l) evolves to the
maximally entangled state from E@.3b), this example does
-5 not only provide a good basis to study the creation of en-
tanglement during the process, but it allows also to evaluate

-5 0 5
ax (Particle 1)

-5 0 b5

ad

to which extend the techniques to analyze quantum correla-
tions of indistinguishable particles can be applied.

Let us write a general pure two-boson state in an
N-dimensional single-particle space as |v)
=>M_,0ib/b/|Q) whereb! andb; are bosonic creation
and annihilation operators aff)) is the vacuum state such
thatb|Q)=|i ). The complex symmetric matrix;; =v ; is
normalized as tr{Tv)=1/2. If new bosonic annihilation op-
eratorsh =X;U;;b; are introduced by a unitary transforma-

FIG. 5. Snapshots of the spatial two-particle wave functiontion U of the single particle space, than transforms as

lih(x1,%,)|? for #/Rb. The parameters are as in Fig. 3. The horizon-Uy UT. Now we find that for every symmetric complex ma-
tal and vertical axes of each plot show the coordinate of the first angix ;, there exists a unitary such thatUvUT is diagonal,
second particle, respectively. Initially there is one particle in each of o UUUTZdiaQ[)\l . A\,0, ..., 0 with \;>0[34,35.r

the traps. The symmetry along the diagoraFx, is due to the is called theSlater rankof |v) and |v>:2r71)\ib/Tb/T|Q>
bosonic statistics. A particle in the ground state of one of the trapﬁS Slater decompositionA bosonic von Néumar;n éntropy
corresponds to a Gaussian distribution in the direction of the respe%-an be defined as a function of the Slater coefficianf85]
tive axis while one node corresponds to the first excited state. Thus ! '
the initial states aréa) |00) ™, (b) |01), and(c) |11)*. The time for

the snapshots is shown in Fig(ds. See Ref[31] for animated

_ _ _ (16)
illustrations of the gate operation.

SB=—i221 AZloga(ND).
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L Schmidt rank, this is clearly not the case here. The reason for
this difference is that Slater rank ai$d are explicitly con-
structed as invariants under arbitrary unitary transformations
of the complete single-particle space, i.e., these concepts do
not distinguish between local and nonlocal transformations
[36]. But here it is reasonable to demand invariance only
, with respect to transformations within a trap.
1.0 S We already noted in Sec. Il D that for certain sets of pa-
rameters double occupation in the final state is limiting the
fidelity of the gate operation, e.g., for a small value of the
P scattering lengttag [30]. To illustrate that in this case still a
A large amount of correlations can be present, in Fig) We
N show quantum correlations for a different set of parameters,
() Y N N chosen such that the final state, neglecting symmetrization,

00l o olemmil VAN N, Sy

LI L L L L I A L A
0 reads

2.0

[ SB
"""""""""" SPeingle
_______ Sspatial( 1= psingle)

et S
z N,

0.5

LI S S B B B
~

T
w)
@

"""""""""" Spsingle
_______ Ssputiul( 1- psingle)
RS, S, f

C10l1)al0)g+C01|0) Al 1)g+Ca| 1) Al0) s+ C5|0)p|1)p :(17)

with |c10/%=|cos)2~0.3 and|c,|?=|cg|2~0.2. The first two
parts contribute tgarticle correlationswhile the last two
account for double occupation on site A or B and represent
spatial correlations In Fig. 7(b) the entropySgp,ia COrre-

i I;“-. S sponding to the latter type of correlations is plotte¥]

(b) i together withSandSg . Sas well asSg,qi,are scaled by the

0.5

) probabilitiespgjngie aNd 1— Pgingie, respectively. The oscilla-
e tions of Sy after the traps are eventually separated is due to
the interaction that is present if two atoms occupy the same
trap. Becaus&g does not respect locality this interaction can
FIG. 7. Quantum correlation@) for the parameters of Fig. 3, change its value which underlines that in this context corre-
i.e., for the JSWAP gate operation applied t91), and (b) for a;  lations are not described Ig in an appropriate way.
=108y, wt,=52.7, w,tj=20.4 and the rest of the parameters as  In Ref. [38] Zanardi quantifies correlations for indistin-
in Fig. 3. The bosonic von Neumann entroSy, the entropy  guishable particles by mapping bosofar fermionig states
Shingee for particle correlations after projection onto the spaceto an occupation number basis and calculating the von Neu-
spanned by|00)*,|01)*,[01)",[12) "} (Psinge s the probability o mann entropyS, in this basis. This method takes into ac-
find the state in the space spanned by this), stte entropy  count the fixed partition of the full single-particle space as
Sspatia( 1~ Psingd for spatial correlationd37], and Zanardi's en- \ye|| a5 spatial correlatiorf86]. If it is applied to the,/Swap
tropy S; are plotted. operation thers,=0 for |01) andS,=1 for U gywapl01) but
B . in between it has a maximum of 1.4. Applied to the op-
o i S i S ok 118 araton eaing 1o Eq(17 we nd =0 il ana
| % &N=2 and the initial 1' hq Si K ~ 2 finally. As can be seen from the above discussion as well
twona%l:jrs(,:azs 1 v_vhilgnthet ﬁnlgllt!sa:afstgv;ﬁ Oi‘;‘ he?steélﬁgr as from the analysis in Ref36] valuesS,>1 are due to
B . VWAL mixtures of particle and spatial correlations. It is, however,
rank four andSe=2. Sﬁ‘(t) is plotted in Fig. Ta) together not clear whether the presence of these different types of
with S- psmg|e,_wh_ere8 is the von Neumann entropy calcu- correlations leading t&,>1 can be utilized in this context,
Iated+by pKOJeCt'rlg Ontf the space Spa.”@d by the S&hhere the qubits are explicitly implemented in the vibra-
{|00) ,El) ,|01), |.11> } and r.enorrr?al'|zmg. If NOW  4ional states of each trap.
states|i)_ are considered as being distinguishable from These results show that for indistinguishable particles in-
states|i ) then S can be calculated as for distinguishable teracting at short distances, different types of quantum cor-
particles psingie iS the probability to find the state in the space relations appear that go beyond the particle correlations ex-
spanned by the given set. For tkiBwAP gate initially and  plored in the context of thgswApP gate. Even if the fidelity is
finally psinge=1 holds. We havé&=0 for |01) andS=1 for ~ poor, strong quantum correlations can be found in the final
U swar 01), and the initial and final Schmidt ranks obvi- state. What remains is to demonstrate their usefulness and to
ously are zero and one. develop a framework that allows to quantify these correla-
Although it should be expected that in the limit of large tions depending on the implementation of the qubits, on the
separation the bosonic von Neumann entr&yand the notion of locality, and on the class of allowed local opera-
Slater rank coincide with the von Neumann entrdpgnd  tions.

0.0

|
Q
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I
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o
o
o
o
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IV. PRACTICAL CONSIDERATIONS gradient optical lattice. The barrier between two neighboring
. . . _traps could be raised or lowered by changing the intensity
Scalable systems of optical microtraps based on the dipol tio between the two beams. We notice that the realization

force can be realized by focusing a single red-detuned laseft 5 swap gate as discussed here should also be possible in
beam with a microlens arrdyL9,21. The temporal evolution  hiq setyp although the implementation in optical microtraps

of the trap separation as shown in Fig. 1 can be realiged ,resents some advantages such as being not sensitive to the
by using two parallel laser beams focused in such a way thaihase fluctuations of the lasers.

the trapping potentials are longitudinally shifted along the
common laser beam direction @r) by illuminating the mi-
crolens array with two laser beams under slightly different V. CONCLUSION

angles with the possible inclusion of an additional two- \ye have investigated quantum computation in optical mi-
dimensional confining potential perpendicular to the direc-crotraps with the qubits implemented in the motional states
tion of the trap displacementl9]. For the parameters we of neutral atoms, and tunneling and cold controlled collisions
used in the gate simulations, the minimum distance ofccounting for the interaction between two different qubits.
aamin~2 corresponds to a separation of the traps @irh A time-dependent two-particle orthogonal basis has been in-
which is achievable in the present optical microtrgps].  troduced to simulate the gate operation and to compute en-
With laser powers of 1-10 mW per trap, rubidium atoms cartanglement throughout the whole gate process. The bosonic
be trapped with typical trapping frequencies along the lasestatistic nature of the particles and its role in entanglement
beam direction ofw,~10*-10° s ! while the transverse has been discussed in detail. We have demonstrated the ca-
trapping frequencies can be one or two orders of magnitudpability of optical microtraps to realize a high-fidelifswaP
larger[19]. Additionally, sideband cooling could be applied gate operation in the few tens of milliseconds range. Finally,
to cool the atoms to the ground state of each trap in alsome practical considerations for the physical implementa-
dimensions. tion of this quantum gate have been discussed.

In the optical microtrap experiments, the trapping poten-
tial is Gaussian shaped with typical depths of 1-10 mK
X kg [19]. For a single trap it is thus a good approximation to
assume a harmonic potential for the lower-lying states. For This work was supported by the European Commission
two traps being close together the actual potentials will dethrough the projects EQUIP and ACQUIRE within the
viate from the form assumed in E(B). Nevertheless, it is framework of the IST-program, and by the Deutsche Fors-
possible to generalize the methods applied here to these pajhungsgemeinschaft through the research program “Quan-
ticular potentials. teninformationsverarbeitung” and SFB 407. J.M. would like

Let us discuss how the error rate sf1% arising from  to thank the European Community for financial support un-
nonadiabatic effects as discussed in Sec. Ill A modifies foger Contract No. HPMF-CT-2000-00916. We thank A. San-
this particular implementation. The lifetime of the atoms in pera, W. Ertmer, W. Lange, C. Wiliams, R. Dumke, F.
the traps is about 100-1000 ms. In this case coherence Hulpke, P. Hyllus, O. Ghne, J. Korbicz, T. Mther, L. San-
mostly limited by spontaneous scattering of photons. Suclos, T. Schulte, and M. Volk for helpful discussions.
scattering processes occur+1.0 ms but as shown in photon
echo experiments with strongly confining trapping potentials
[39] one atom scatters approximately 50 photons during the APPENDIX A: GRAM-SCHMIDT
coherence time. For the parameters from Fig) €his gives ORTHONORMALIZATION

rise to a qubit error rate of another 2% such that the total | this appendix we will show how to construct the time-

error rate is approximately 3%. If furthermore single-site . art ¥y
addressing is desired before and after the operation, the%ependent orthanormal single-particle states, denotgi)by

typical initial and final distances between the traps have to b@"d [i)r. from the harmonic oscillator energy eigenstates
about 5-20um which for rubidium meansea,, = 10—40 i and||)R_ fpr the left Qnd th_e right trap, respectively. We
instead ofwa,,5,=5 which we used in our previous calcula- start by defining states involving one state of each trap:

tions. It is straightforward to estimate that the time needed

ACKNOWLEDGMENTS

for the complete process in this case ranges between 18 and 1 . _
40 ms with an error rate due to nonadiabatic couplings to li ‘ET[|I>Li(—1)'|I>R] i=0123..., (A1
other vibrational states of 4—8%. Taking into account the 2

contributions from the spontaneous scattering the cumulated

qubit error rate can finally be estimated to lie between 5%where the superscript (—) indicates positive(negative

and 12% which should be enough for proof-of-principle ex-parity with respect to the middle between the two traps. We

periments. then group these states according to their parity in two sets
In a recent paper, Charrcet al. [28] proposed the real- S™={|0),|1), ...} and focus first on the positive parity

ization of a phase gate in an optical lattice where the qubitset S™. This set contains states that are neither orthogonal

were also implemented in the motional states. Two lineanor normalized. To perform the orthonormalization, we use

counterpropagating beams from the fundamental and firghe Gram-SchmidtGM) method starting with the following

harmonic of a CQ laser were used to produce an intensity normalized function:
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N (x|0)* is straightforward to check from Eq6A6) that they satisfy
$o (X,8)=——. (A2)  the following property under parity transformation with re-
f [(x]0)*"|2dx spect to the middle of the traps:
EEN _ i o\
Then, we define the first linearly independent funciih as XL r=> (=D (X[i)RL- (A7)
<X|1>++a10¢g(x,a) APPENDIX B: UNIVERSALITY OF THE swap GATE

¢1 (x,@)=

, o (A3) : :
Our goal here is to write down the sequence of steps

f [(xI2) " + g0 (x,a)[*dx requiredgto build the controlledoT gate, WhiC?], in the com- P
putational basis [0)4|0)g, [0)al1l)g, [|1)al0)g, and

where a;=—[ ¢ (x,a)(x|1)"dx which guaranties |1),|1)g, reads

(¢pg| b1 )=0. We repeat this procedure to obtain the rest

of the linearly independent functiong, ,¢5, ... with

positive parity. In an analogous way, we determine from

S the set of linearly independent functions Ucnot=

{¢g b1 ¢, b3, ...} An important feature of the GM

method when applied to a set of states with the same parity is

that the constructed orthonormal states retain the parity Offrom the JSWAP gate

the original set of states. Thus states frog } and{¢; } 9

have positive and negative parity, respectively, and therefore, 1

the whole set{ ¢y ,¢1 , b, , b3, ...} is orthonormal. Ex-

plicitly, the first four orthonormalized functions read 0

: (B1)

o O O -
o O -, O
= O O O
o » O O

0 0
1—i
by (x,2)=E&; (a)(X|0)", (Ada) U swar= (B2)

0

1+i 0
2

+ _ et 11 i+Xa3/2 -a%a? %
¢1 (x,@)=¢1(a)| (x|1) _%we x|10)* |, 0

(Adb)  The single-qubit operations we need are on one hand the
Hadamard gate

[ [N
o N | N+ O

1

where
1 1 (1 1 ) ©3)
+ H == y B
& (@)=—F7—., (A5a) Jp2il1 -1
lte ¢
and on the other hand the following combination of identity
ga’a® and Paulio, matrices:

&(a)= . 1 0
\/(ea2a2i1)(ea2a2_e7a2a2i2a2a,2) O'Z( .)zeiZ'eii‘TZ_ (B4)

(A5b) 0 —i

For the sake of brevity, we do not explicitly show the ana-Let us callH,g and o, g the corresponding single-qubit
lytical expressions for the rest of tha" . operations for qubiA or B. Now it is easy to check that the

Once we have obtained the orthonormal &6f}, it is following combination of single-qubit operations aggwApP

straightforward to write down the single-particle basis thatdates yields the phase gate:
we will use,

1 00 O
_ 1 B 0 1 0 O
<X|'>L:E(¢i++¢i_), (A6a) Upnase= 0a 08U swaroaU Jswap= 0 0 1
0 0 0 -1
o\ i 1 + - (BS)
(X[1Dr=(—1)'—=(& — ;). (ABD)
V2 This sequence is not unique, and more sophisticated se-

) uences involving single-qubit operations on only one of the
These states are orthonormal due to the orthonormality of thgubits can be implemente@4]. Finally, to obtain the
¢i” and in the limitaa>1 become the corresponding har- controllednoT gate it is enough to apply a Hadamard gate

monic oscillator energy eigenstates for each trap. These neyy, the qubitA at both sides of Eq(B5), i.e.,
orthonormal states do not have in general a well-defined par-

ity with respect to the center of the corresponding trap but it Ucnot=HaUppaseHa - (B6)
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