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Quantum computing in optical microtraps based on the motional states of neutral atoms
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We investigate quantum computation with neutral atoms in optical microtraps where the qubit is imple-
mented in the motional states of the atoms, i.e., in the two lowest vibrational states of each trap. The quantum
gate operation is performed by adiabatically approaching two traps and allowing tunneling and cold collisions
to take place. We demonstrate the capability of this scheme to realize a square root of swap gate, and address
the problem of double occupation and excitation to other unwanted states. We expand the two-particle wave
function in an orthonormal basis and analyze quantum correlations throughout the whole gate process. Fidelity
of the gate operation is evaluated as a function of the degree of adiabaticity in moving the traps. Simulations
are based on rubidium atoms in state-of-the-art optical microtraps with quantum gate realizations in the few
tens of milliseconds duration range.
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I. INTRODUCTION

The development of tools to prepare, manipulate a
measure the quantum state of a physical system repre
one of the great challenges of modern science and, in
ticular, it is essential for applications in quantum informati
processing such as quantum computing. At present a
systems have been identified that should permit quan
computation: molecules in the context of NMR@1#, ion traps
@2#, cavity QED with photons and atoms@3#, solid-state de-
vices such as quantum dots@4–6#, and trapped neutral atom
@7–11#. For Rydberg atoms in high Q cavities, the engine
ing of entangled states and the implementation of quan
logic have been demonstrated@12#, furthermore a quantum
gate has been performed between the internal and exte
degrees of freedom of an ion in a trap@13#. In NMR systems,
quantum algorithms on a few qubits, e.g., Shor’s factor
algorithm, have been reported@14#.

Neutral atoms are promising candidates for quantum c
puting for at least two reasons:~i! techniques of cooling and
trapping atoms are by now very well established@15#; and
~ii ! they are comparatively less sensitive to decoherence,
interaction with the ‘‘classical’’ environment. Neutral atom
can be stored and manipulated in optical lattices@16#, stan-
dard dipole traps@17#, and microtraps@18–21#. In particular,
magnetic@18# and optical microtraps@19–21# offer an inter-
esting perspective for storing and manipulating arrays of
oms with the eventual possibility to scale, parallelize, a
miniaturize the atom optics devices needed in quantum
formation processing. Moreover, optical microtraps can t
advantage of the fact that most of the current techniques u
in atom optics and laser cooling are based on the opt
manipulation of atoms@19#. Many of the requirements fo
the implementation of quantum computation@22# have been
recently demonstrated in optical microtraps containing;100
atoms per site@21#, e.g., selective addressing of single tr
sites, and initializing and reading out of quantum states
1050-2947/2002/66~4!/042317~11!/$20.00 66 0423
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each site. In addition, the possibility to store and det
single atoms in optical dipole traps has been reported@17#.

With the demonstration of single-qubit gates bei
straight forward, what remains to be experimentally dem
strated is the capability of these optical microtraps to p
form two-qubit quantum gates. The most prominent e
amples of such gates include the controlled-NOT ~CNOT! gate,
the phase gate and theASWAP gate @4,23#. The latter trans-
forms statesu0&u1& and u1&u0&, written in the computationa
basis, to maximally entangled states, while leavingu0&u0&
andu1&u1& unaffected, in such a way that after the success
application of twoASWAP gates the states of the qubits a
interchanged. Each one of these two-qubit gates, toge
with arbitrary single-qubit operations, is universal, i.e.,
lows to perform any quantum algorithm. In practice, the p
ticular two-qubit gate to be implemented will depend on t
physical system under consideration.

With respect to neutral atoms, several different physi
mechanisms to perform two-qubit gates have been propo
ranging from cold controlled collisions@7,8# and dipole-
dipole interactions@9–11# to purely geometric quantum evo
lution @24#. In the cold collisional case, a two-qubit pha
gate was proposed by adiabatically approaching two traps@7#
or by instantaneous state-selective switching of the trapp
potentials@8#. In both cases the qubit was encoded in so
internal degrees of freedom of the atoms, e.g., spin, Zee
or hyperfine levels. For cold collisions to take place the
oms have to be brought to close distances, such that t
quantum statistical nature has to be taken into accoun
detailed study of the role of the bosonic or fermionic ch
acter of particles in the context of quantum information
atomic waveguide structures has been done by Anders
et al. @25,26#.

Here we address the problem of implementing a quan
gate by adiabatically approaching two bosonic atoms, e
stored in a different microtrap. In contrast to the propos
mentioned above, we assume the qubit to be implemente
©2002 The American Physical Society17-1

https://core.ac.uk/display/11556108?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


un

rv
rs
n

lly
tio
al
co
hi
e
th
th
tr

ru

w
be
na
tu

te
te

in
o

b
i

lit

c
n
c-
re

n
th

ent
t is
ary
tates
of
two
t

tum
ion
e

a-
te

t-
en-

1
n

ial

ted.
to

ing
g
ps

in

pa-
-
for

c-

y.

K. ECKERTet al. PHYSICAL REVIEW A 66, 042317 ~2002!
the motional states of the atoms, i.e., an atom in the gro
or the first vibrational state of the trap representsu0& or u1&,
respectively. Note that, as for the ion-trap case, the obse
tion of neutral atoms cooled down to the ground and fi
vibrational states as well as superposition states in o
dimensional traps has been achieved@27#. To perform the
gate operation, we apply the steps outlined in Fig. 1. Initia
the two microtraps are far apart such that the interac
between the two atoms is negligible. Then we adiabatic
move both traps close together such that tunneling and
controlled collisions become important. The dynamics of t
process strongly depend on the particular motional stat
the atoms and we can make use of this fact to control
interaction such that, after the eventual separation of
traps, the desired gate operation is realized with each
again containing only one atom.

To be more specific we consider here laser-cooled
bidium atoms stored in optical microtraps@21#, assuming
that each trap contains initially only one atom. We will sho
that theASWAP gate is the most natural quantum gate to
implemented when the qubit is encoded in the motio
states of the atoms and interaction takes place through
neling and cold collisions. This result applies to both,85Rb
and 87Rb, although they have negative and positive scat
ing length, respectively. In particular, we will demonstra
that a quantum gate of;20 ms duration can be performed
state-of-the-art optical microtraps. Very recently, Charr
et al. @28# have proposed the implementation of aphase gate
in an optical lattice with, as it is done also here, the qu
encoded in the motional states. In this case, a controlled
terference set-up was proposed to perform a high-fide
gate with operation time of 38 ms.

The paper is organized as follows. In Sec. II, we introdu
the physical model. Section III is devoted to the impleme
tation of theASWAP gate. In Sec. IV we discuss some pra
tical considerations. And, finally, Sec. V summarizes the
sults and presents the conclusions.

II. MODEL

In this section we will first write down the Hamiltonia
for the two atoms stored in the microtraps and discuss

FIG. 1. Separation of the traps as a function of time.t r andt i are
the approaching or separating and interaction times, respectivel
amax atoms located in different traps do not interact, while atamin

tunneling and cold collisions take place.
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interaction mechanism. We will introduce a time-depend
orthonormal set of single-particle states for each trap tha
also orthogonal to the states of the other trap for arbitr
distances between the two traps. These single-particle s
will make it possible to expand the wave function in a set
two-particle orthonormal states. This representation has
important advantages:~i! it allows to compute entanglemen
throughout the whole gate process; and~ii ! it strongly re-
duces the computational time required to simulate a quan
gate operation with respect to a direct numerical integrat
of the Schro¨dinger equation for the two-particle spatial wav
function. Finally, we will discuss the physical implement
tion of the qubits and its implications for the quantum ga
operations.

A. Hamiltonian

The Hamiltonian governing the dynamics of the two a
oms in a time-varying particle-independent trapping pot
tial V(rW,t) can be written as

H5 (
i 51,2

F pW i
2

2m
1V~rW i ,t !G1U~rW12rW2!, ~1!

wherem is the mass of the atoms,rW i and pW i are the~three-
dimensional! position and momentum operators for atoms
and 2, andU(rW12rW2) accounts for the interaction betwee
the two atoms.

To simplify the problem, we take the trapping potent
shape to be time-independent alongy andz directions,

V~rW,t !5v~x,t !1vp~y!1vp~z!, ~2!

and assume much stronger confinement iny andz directions
than inx, such that transverse excitations can be neglec
In fact, we will consider that both atoms are cooled down
they andz vibrational ground states and remain there dur
all the interaction process. Explicitly, we take the followin
one-dimensional potential to describe the two microtra
separated by a distance 2a(t):

v~x,t !5
mvx

2

2
$@x1a~ t !#2u~2x!1@x2a~ t !#2u~x!%,

~3!

wherevx is the trapping frequency in thex direction, and
u(x) is the step function.

The temporary variation of the trap distance is sketched
Fig. 1. Initially the traps are separated by a distance 2amax.
The process of slowly approaching them to a minimum se
ration 2amin takes a timet r and is modeled by the first quar
ter of a period of a cosine. Then we let the atoms interact
a time t i and, finally, we slowly separate the traps.

For cold bosonic atoms, the dominant collisional intera
tion is due tos-wave scattering@8#, which can be described
by a contact potential of the form

U~rW12rW2!5
4pat\

2

m
d3~rW12rW2!, ~4!

At
7-2
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whereat is thes-wave scattering length of the rubidium a
oms, e.g., in the spin tripletat52369 a0 for 85Rb andat
5106 a0 for 87Rb with a0 being the Bohr radius. As long a
both atoms remain in the transverse vibrational grou
states, we can integrate out the corresponding degree
freedom and obtain an effective one-dimensional interac
potential@8#

u~x12x2!52at\vpd~x12x2!, ~5!

wherevp is the transverse trapping frequency. Eqs.~3! and
~5! allow us to reduce the complexity of the problem to o
dimension.

B. Single-particle states

We will implement the qubits into the ground and fir
excited vibrational states of each trap, i.e., we will use
motional states of the atoms. When the two traps are
apart, i.e.,aa@1 with 1/a[A\/mvx being the position un-
certainty of the ground state, these states are the en
eigenstates of two displaced one-dimensional harmonic
cillators:

^xu0&L,R5
Aa

p1/4
e2

1
2 a2(x6a)2

, ~6a!

^xu1&L,R5
A2a

p1/4
e2

1
2 a2(x6a)2

a~x6a!, ~6b!

with L andR labeling the left and right trap, respectively. A
we approach the two traps, these single-particle states o
lap and are no longer orthogonal. To numerically integr
the Schro¨dinger equation and to compute entanglem
throughout the gate process, we construct an orthonor
single-particle basis for arbitrary distances of the two tra
by applying the Gram-Schmidt method~see Appendix A!. If
we denote these new single-particle states byu ī &s with i

50,1,2,3, . . . ands5L,R then it holdss^ ī u j̄ & t5d i j dst . The
four states that for large distances correspond to the
lowest states of each trap read

^xu0̄&L,R5^xu0&L,R

j0
11j0

2

2
1^xu0&R,L

j0
12j0

2

2
, ~7a!

^xu1̄&L,R5S ^xu1&L,R2
xe2a2a2

p1/4a3/2
^xu0&R,LD j1

11j1
2

2

1S ^xu1&R,L2
xe2a2a2

p1/4a3/2
^xu0&L,RD j1

22j1
1

2
,

~7b!

wherej0
6(a) and j1

6(a) are given in Eqs.~A5!. For large
separation of the traps, i.e.,aa@1, we havej i

15j i
2 for all

i and thus theu ī &L,R become the eigenstates of a single h
monic trap centered at7a. Notice that theu ī &L,R states have
the following symmetry under parity transformatio
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^xu ī &L,R°(21)i^xu ī &R,L . The general proof is given in Ap
pendix A. This property obviously holds for theu i &L,R , and
the u ī &L,R are constructed such that this symmetry is ma
tained.

Although above we have written only four states, for
simulations using these orthogonalized states we will inclu
all states up tou3̄&L,R .

C. Two-particle states

Let us motivate the two-particle basis which we will us
On one hand, it must satisfy bosonic statistics, i.e., the b
states have to be symmetric under the permutation of
particles. On the other hand the Hamiltonian of this system
symmetric with respect to parity transformation, i.e.,H(x)
5H(2x), and therefore does not couple states of oppo
parity. For this reason we will introduce basis states w
well-defined parity. If for this description we limit ourselve
again to the four lowest single-particle states, then
bosonic two-particle sector forms a ten-dimensional Hilb
space. Here, we use the following notationum̄(1)&s

^ un̄(2)& t[um̄&sun̄& t with 1 and 2 labeling the atoms an
s,t5L,R. Thus, the bosonic two-particle basis reads

u00&15
1

A2
~ u0̄&Lu0̄&R1u0̄&Ru0̄&L), ~8a!

u01&15
1

2
~ u0̄&Lu1̄&R1u1̄&Ru0̄&L2u0̄&Ru1̄&L2u1̄&Lu0̄&R),

~8b!

u11&15
1

A2
~ u1̄&Lu1̄&R1u1̄&Ru1̄&L), ~8c!

u0̃0&15
1

A2
~ u0̄&Lu0̄&L1u0̄&Ru0̄&R), ~8d!

u01̃&15
1

2
~ u0̄&Lu1̄&L1u1̄&Lu0̄&L2u0̄&Ru1̄&R2u1̄&Ru0̄&R),

~8e!

u11̃&15
1

A2
~ u1̄&Lu1̄&L1u1̄&Ru1̄&R), ~8f!

and

u01&25
1

2
~ u0̄&Lu1̄&R1u1̄&Ru0̄&L1u0̄&Ru1̄&L1u1̄&Lu0̄&R),

~9a!

u00̃&25
1

A2
~ u0̄&Lu0̄&L2u0̄&Ru0̄&R), ~9b!

u01̃&25
1

2
~ u0̄&Lu1̄&L1u1̄&Lu0̄&L1u0̄&Ru1̄&R1u1̄&Ru0̄&R),

~9c!
7-3
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u11̃&25
1

A2
~ u1̄&Lu1̄&L2u1̄&Ru1̄&R). ~9d!

The notation at the left-hand side of Eqs.~8! and ~9! means
the following: superscripts1 or 2 indicate that the two-
particle state has positive or negative parity, respectiv
while the tilde accounts for states where, foraa@1, both
atoms are in the same trap, i.e., double-occupancy states
easy to check the symmetry of these two-particle states u
the exchange of the atoms by making use of the parity pr
erty of statesu ī &L,R discussed after Eqs.~7!.

In addition it is worth to mention that in our simulation
we will consider up to eight single-particle states whi
gives rise to a bosonic two-particle Hilbert space of 36 sta
~20 states having positive parity from which 10 correspo
to double occupancy; and 16 states having negative pa
with 10 accounting for double occupancy!. Finally note that
the fact that we are able to expand the wave function i
this finite number of two-particle orthogonal states has a
an important advantage with respect to the time needed
the simulation of a gate operation. We have checked the
curacy of the restriction of the simulation to this subspace
comparing the results of the simulations to a direct numer
integration of the Schro¨dinger equation for the two-particl
spatial wave function which is about four orders of mag
tude slower.

D. Physical implementation

We start from two well-separated traps, each contain
one atom. In this situation we can neglect the bosonic na
of the particles and forget about the symmetrization@29#.
Only then it is possible to speak about well-defined qub
and we choose to introduce labelsA andB for the two qubits
by labeling the atom found in the left trap byA and the atom
in the right trap byB.

With the two traps far apart, single-qubit operations, e
a Hadamard gate, can be realized by using two laser puls
a Raman configuration focused solely on one of the tra
The quantum gate operation between two qubits is m
more involved. As we approach the traps, due to tunne
there will be a nonvanishing probability to find both atoms
the same trap. Thus we can no longer distinguish the at
such that bosonic statistics become important and the qu
are no longer well defined. If, however, we approach a
separate the traps in such a way that finally there is again
atom in each of the well-separated traps then we can attri
~new! labelsA andB to them in the same way as before.

These considerations suggest the following mapping
the states of the computational basis into the two-part
basis states of Eqs.~8! and ~9!:

u0&Au0&B→u00&1, ~10a!

u0&Au1&B→u01&[
1

A2
~ u01&11u01&2), ~10b!
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u1&Au0&B→u10&[
1

A2
~ u01&12u01&2), ~10c!

u1&Au1&B→u11&1. ~10d!

Note that the two-particle states at the right-hand side of
~10! have a trivial evolution at the trapping frequency~or
multiples of it! that can be removed by including this pha
in the definition of the single-particle states.

We will take states~10! as the starting set for the gat
operation and, after setting the initial state, we will adiaba
cally realize the gate. In this adiabatic regime, if we start
an energy eigenstate the system will follow this tim
dependent energy eigenstate during the whole gate proc
The only allowed transitions are those corresponding
states that~i! are initially degenerate in energy, and, at sh
distances,~ii ! become coupled via tunneling and/or cold co
lisions. Therefore, in order to find the most suitable gate
be implemented in this system, we have to identify the
resonant couplings.

For this aim we will first discuss the ideal case for whi
there is no interaction between the atoms, i.e., the case w
at50 in Eq. ~5!. We then have the following resonant co
plings:

u00&1↔u00̃&1, ~11a!

u01&↔u01̃&↔u10&↔u10̃&↔u01&, ~11b!

u11&1↔u11̃&1, ~11c!

where u01̃&[(1/A2)(u01̃&11u01̃&2) and u10̃&[(1/A2)
3(u01̃&12u01̃&2). Therefore, there is a non-negligibl
probability ~even if we move the two traps adiabatically! to
have both atoms in the same trap after the gate opera
Note that the kinetic and trapping terms of the Hamiltoni
do not directly coupleu01& with u10& since they are single
particle Hamiltonians and, therefore, they do not allow
the simultaneously change of the motional states of both
oms. The coupling betweenu01& and u10& is mediated
through the double-occupancy statesu01̃& andu10̃&. Clearly,
in the noninteracting case, a quantum gate operation alw
has to face with double occupancy that makes the prob
hard to handle.

Figures 2~a! and 2~b! show, for a particular parameter se
the final state of the system after the whole process of
proaching and separating the traps as a function of the s
tering length. In Fig. 2~a! the initial state isu01& and in ~b!
u11&1. Although the scattering length has a constant va
that depends on the atom under consideration, it is use
this plot as a free parameter to illustrate the doub
occupancy problem. Notice that by changingvp it is pos-
sible to tune the strength of the effective interaction pot
tial, cf. Eq. ~5!. Figs. 2~a! and 2~b! clearly show that, forat
50, double occupancy is indeed very important in the fin
state of the system.

The problem of double occupancy is naturally suppres
when one takes into account the interaction between the
7-4
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oms. In this case, double-occupancy states are no longe
generate with single-occupancy states and we can neglec
probability to find double occupation in the final state
adiabatically moving the traps. Thus, in the presence of
teraction, the resonant couplings read

u01&↔u10&, ~12a!

u11&1↔u02&1, ~12b!

where u02&15(u0̄&Lu2̄&R1u2̄&Ru0̄&L1u0̄&Ru2̄&L1u2̄&Lu0̄&R)/
2. Notice that now the collisional interaction term~5! allows
for the simultaneous change of the motional states of b
atoms. The role of these couplings is clearly shown in Fig
In Fig. 2~a!, where the initial state isu01&, double-occupancy
populations in the final state start to decrease and eventu
vanish as soon as the scattering length is increased. Whe
initial state isu11&1, Fig. 2~b!, double occupancy also van
ishes as the scattering length increases, but then the po
tion of stateu02&1 becomes important.

Therefore, the coupling given in Eq.~12a! suggests the
implementation of aASWAP gate, as long as we are able
suppress or control coupling~12b!. The degeneracy betwee
u11&1 and u02&1 can be broken, for instance, by taking a
anharmonic trapping potential such that the vibrational f
quencies are no longer equally spaced. In addition, it is p
sible to adjust the interaction time in such a way that, at

FIG. 2. Populations of the final state of the system after ad
batically approaching and separating the traps as a function o
scattering length. The initial state is~a! u01& and~b! u11&1, respec-
tively. The parameter setting isvx51.253104 s21, vp54.9
3105 s21, 1/a5241 nm,amaxa55, amina51.99, vxtr570, and
vxt i569.
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end of the gate operation, stateu02&1 is not populated. In
what follows, we will focus on this last possibility.

III. ASWAP GATE

The ASWAP gate has the following effect on the states
the computational basis:

u0&Au0&B→u0&Au0&B , ~13a!

u0&Au1&B→11 i

2
u0&Au1&B1

12 i

2
u1&Au0&B , ~13b!

u1&Au0&B→12 i

2
u0&Au1&B1

11 i

2
u1&Au0&B , ~13c!

u1&Au1&B→u1&Au1&B . ~13d!

It is straightforward to check that the successive applicat
of two ASWAP gates exchanges the states of the qubits,
USWAP5UASWAP•UASWAP. As it has been mentioned befor
theASWAP gate together with single-qubit operations suffic
to realize any quantum algorithm@4# which is not the case
for the SWAP gate itself. A simple way to prove this, consis
of showing that the universal controlled-NOT gate can be
obtained fromASWAP gates and single-qubit operations.
fact, a possible sequence is~see Appendix B!.

UCNOT5HAsA
21sBUASWAPsA

2UASWAPHA ~14!

whereHA andsA,B are single-qubit operations. Additionally
sequences involving single-qubit operation exclusively
one of the qubits, e.g., only on A, can be realized@4#.

A. Gate simulation

To simulate the gate operation, we have numerically in
grated the time-dependent Schro¨dinger equation for the
Hamiltonian given in Eqs.~3! and ~5! with the two-particle
wave function expanded in the previously introduced tw
particle basis. Figures 3~a!–3~c! show the result of aASWAP

gate operation for a scattering length ofat5106 a0 corre-
sponding to 87Rb atoms in the spin triplet. The paramet
setting is as in Fig. 2 and the initial state is~a! u00&1, ~b!
u01&, and ~c! u11&1. The parameter values are chosen
reproduce the gate operation given in Eq.~13! as well as to
suppress theu02&1 population in the outgoing state of Fig
3~c!. Notice that states representing double occupation
populated at close distances for all three cases. Howe
these populations vanish after the eventual separation o
traps since the traps are moved adiabatically and sin
occupancy states are not degenerate with double-occup
ones.

For 85Rb with negative scattering length it is slightl
more involved to find parameters for the gate realizat
since, due to the attractive character of the interacti
double-occupation states can more easily become resona
single-occupation states, e.g.,u01̃&1 with u00&1. The param-
eters must be chosen to avoid this degeneracy betw
double- and single-occupation states. Fig. 4 shows the re

-
he
7-5
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of a gate simulation for85Rb. Unlike for 87Rb, Fig. 4~a!

shows that starting fromu00&1 stateu01̃&1 is populated dur-
ing the gate operation.

On the other hand, it is important to notice that the resu
obtained for87Rb ~Fig. 3! can be also directly implemente
in 85Rb by making use of the strong variation of the scatt
ing length in the vicinity of a magnetic-field induced Fesc
bach resonance@30#.

To check the accuracy of the previous simulations
which the two-particle wave function was expanded in a
nite set of states, we also have numerically integrated
Schrödinger equation for the two-particle spatial wave fun
tion by using an operator split method and an fast Fou
transform~FFT! routine. Figure 5 shows the results of th
integration for the same parameter values as in Fig. 3@31#.
The snapshots give the joint-probability distributions for t
two particles for three different initial states:~a! u00&1, ~b!
u01&, and~c! u11&1. The bosonic nature of the atoms man
fests in the symmetry of the joint-probability distributio
along the diagonalx15x2. In ~a! and ~c! the final state co-
incides with the initial one in accordance with Eqs.~13!. In
~b! u01& evolves towards the maximally entangled state@(1
1 i )u01&1(12 i )u10&]/2 whose joint-probability distribution
corresponds to the donutlike shape of the last frame.

The accuracy of the simulated gate operationU with re-
spect to the perfect gate operationUASWAP as given by Eqs.
~13! is computed through the averaged fidelity, i.e.,

FIG. 3. SimulatedASWAP gate operation for87Rb with at5106
a0. The rest of parameters as in Fig. 2. The initial state of
system is~a! u00&1, ~b! u01&, and~c! u11&1. We note that for~b! the
final relative phases ofu01& and u10& are as in Eq.~13b!.
04231
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F5Tr@UrU†UASWAPrUASWAP
†

#, ~15!

where the average is taken over the four orthogonal p
input statesr from Eqs.~13!. Figure 6~a! shows for87Rb the
averaged fidelityF of the gate in the parameter planet r
versusamin . The rest of the parameters are as in Fig.
Clearly, the fidelity is very sensitive to the minimum distan
due to the exponential dependence of tunneling at this
tance. Note that the fidelity of the gate operation correspo
ing to the parameters of Fig. 3 with a gate duration of 2t r
1t i;17 ms for vx51.253104 s21 is F.0.9997, corre-
sponding to an error rate below 0.1% per gate operation

An important issue is how much the gate duration can
decreased while maintaining a high fidelity. In Fig. 6~b! the
gate duration is reduced by a factor of 2 which increases
error rate by a factor of 10. In fact, as soon as the rising ti
t r is decreased, nonadiabatic effects occur which in turn
sult in the population of several unwanted states, e.g., do
occupation, in the final state of the system. However, it co
be possible to use the techniques developed in Ref.@32# to
optimize the speed of the gate operation, while suppres
excitations to these unwanted states.

B. Quantum correlations

Let us consider entanglement in the context of theASWAP

gate. As already discussed the initial and, as long as do

e
FIG. 4. SimulatedASWAP gate operation for85Rb and the fol-

lowing parameter values:vx51.253104 s21, vp513105 s21,
1/a5244 nm,amaxa55, amina51.956, vxtr577, vxt i597.2, and
at52369a0. The initial state of the system is~a! u00&1, ~b! u01&,
and ~c! u11&1.
7-6
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FIG. 5. Snapshots of the spatial two-particle wave funct
uc(x1 ,x2)u2 for 87Rb. The parameters are as in Fig. 3. The horizo
tal and vertical axes of each plot show the coordinate of the first
second particle, respectively. Initially there is one particle in each
the traps. The symmetry along the diagonalx15x2 is due to the
bosonic statistics. A particle in the ground state of one of the tr
corresponds to a Gaussian distribution in the direction of the res
tive axis while one node corresponds to the first excited state. T
the initial states are~a! u00&1, ~b! u01&, and~c! u11&1. The time for
the snapshots is shown in Fig. 5~d!. See Ref.@31# for animated
illustrations of the gate operation.
04231
occupancy is suppressed, also the final state consist of
separated and thus for practical purposes distinguishable
ticles, such that the usual notions of entanglement can
used. During the gate operation the particles interact a
short distance and their indistinguishability does not allow
apply the usual concepts of entanglement because we ha
distinguish between statistical correlations arising from sy
metrization and quantum correlations useful in the contex
quantum information. This problem has been discussed
Refs.@6,33# for fermionic two-particle states where the co
cept of Slater rank and a fermionic correlation measure w
derived. In Ref.@6# these methods have been used to stu
correlations in the context of a quantum gate operation
two electrons in quantum dots. They have been translate
bosons in Ref.@34#, and moreover a bosonic von Neuman
entropy has been defined in Ref.@35#. Because under the
ASWAP operation the separable stateu01& evolves to the
maximally entangled state from Eq.~13b!, this example does
not only provide a good basis to study the creation of
tanglement during the process, but it allows also to evalu
to which extend the techniques to analyze quantum corr
tions of indistinguishable particles can be applied.

Let us write a general pure two-boson state in
N-dimensional single-particle space as uv&
5( i , j 51

N v i j bi
†bj

†uV& where bi
† and bi are bosonic creation

and annihilation operators anduV& is the vacuum state suc

that bi
†uV&5u ī &. The complex symmetric matrixv i j 5v j i is

normalized as tr(v†v)51/2. If new bosonic annihilation op
eratorsbi85( i j Ui j bj are introduced by a unitary transforma
tion U of the single particle space, thenv transforms as
UvUT. Now we find that for every symmetric complex ma
trix v there exists a unitaryU such thatUvUT is diagonal,
i.e.,UvUT5diag@l1 , . . . ,l r ,0, . . . ,0# with l i.0 @34,35#. r
is called theSlater rankof uv& and uv&5( i 51

r l ib8 i
†b8 i

†uV&
its Slater decomposition. A bosonic von Neumann entrop
can be defined as a function of the Slater coefficientsl i @35#,

SB52(
i 51

r

lk
2 log2~lk

2!. ~16!

-
d
f

s
c-
us

FIG. 6. Averaged fidelity of the gate operation in the parame
plane t r versusamin . The interaction time is~a! vxt i569 and~b!
vxt i520. The rest of the parameters as in Fig. 3.
7-7
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K. ECKERTet al. PHYSICAL REVIEW A 66, 042317 ~2002!
SB ranges fromSB50 for states with Slater rank 1 toSB
5 log2(N) for Slater rankN states with alll i equal.

In our caseN54 and the initial stateu01& has Slater rank
two andSB51 while the final stateUASWAPu01& has Slater
rank four andSB52. SB(t) is plotted in Fig. 7~a! together
with S•psingle, whereS is the von Neumann entropy calcu
lated by projecting onto the space spanned by the
$u00&1, u01&1, u01&2, u11&1% and renormalizing. If now
states u ī &L are considered as being distinguishable fro
statesu ī &R then S can be calculated as for distinguishab
particles.psingle is the probability to find the state in the spa
spanned by the given set. For theASWAP gate initially and
finally psingle51 holds. We haveS50 for u01& andS51 for
UASWAPu01&, and the initial and final Schmidt ranks obv
ously are zero and one.

Although it should be expected that in the limit of larg
separation the bosonic von Neumann entropySB and the
Slater rank coincide with the von Neumann entropyS and

FIG. 7. Quantum correlations~a! for the parameters of Fig. 3
i.e., for theASWAP gate operation applied tou01&, and ~b! for as

510a0 , vxtr552.7, vxt i520.4 and the rest of the parameters
in Fig. 3. The bosonic von Neumann entropySB , the entropy
Spsingle for particle correlations after projection onto the spa
spanned by$u00&1,u01&1,u01&2,u11&1% (psingle is the probability to
find the state in the space spanned by this set!, the entropy
Sspatial(12psingle) for spatial correlations@37#, and Zanardi’s en-
tropy SZ are plotted.
04231
et

Schmidt rank, this is clearly not the case here. The reason
this difference is that Slater rank andSB are explicitly con-
structed as invariants under arbitrary unitary transformati
of the complete single-particle space, i.e., these concept
not distinguish between local and nonlocal transformatio
@36#. But here it is reasonable to demand invariance o
with respect to transformations within a trap.

We already noted in Sec. II D that for certain sets of p
rameters double occupation in the final state is limiting
fidelity of the gate operation, e.g., for a small value of t
scattering lengthas @30#. To illustrate that in this case still a
large amount of correlations can be present, in Fig. 7~b! we
show quantum correlations for a different set of paramet
chosen such that the final state, neglecting symmetrizat
reads

c10u1&Au0&B1c01u0&Au1&B1cAu1&Au0&A1cBu0&Bu1&B ,
~17!

with uc10u25uc01u2;0.3 anducAu25ucBu2;0.2. The first two
parts contribute toparticle correlationswhile the last two
account for double occupation on site A or B and repres
spatial correlations. In Fig. 7~b! the entropySspatial corre-
sponding to the latter type of correlations is plotted@37#
together withSandSB . Sas well asSspatialare scaled by the
probabilitiespsingle and 12psingle, respectively. The oscilla-
tions of SB after the traps are eventually separated is due
the interaction that is present if two atoms occupy the sa
trap. BecauseSB does not respect locality this interaction ca
change its value which underlines that in this context cor
lations are not described bySB in an appropriate way.

In Ref. @38# Zanardi quantifies correlations for indistin
guishable particles by mapping bosonic~or fermionic! states
to an occupation number basis and calculating the von N
mann entropySZ in this basis. This method takes into a
count the fixed partition of the full single-particle space
well as spatial correlations@36#. If it is applied to theASWAP

operation thenSZ50 for u01& andSZ51 for UASWAPu01& but
in between it has a maximum of;1.4. Applied to the op-
eration leading to Eq.~17! we find SZ50 initially and SZ
;2 finally. As can be seen from the above discussion as w
as from the analysis in Ref.@36# valuesSZ.1 are due to
mixtures of particle and spatial correlations. It is, howev
not clear whether the presence of these different types
correlations leading toSZ.1 can be utilized in this context
where the qubits are explicitly implemented in the vibr
tional states of each trap.

These results show that for indistinguishable particles
teracting at short distances, different types of quantum c
relations appear that go beyond the particle correlations
plored in the context of theASWAPgate. Even if the fidelity is
poor, strong quantum correlations can be found in the fi
state. What remains is to demonstrate their usefulness an
develop a framework that allows to quantify these corre
tions depending on the implementation of the qubits, on
notion of locality, and on the class of allowed local oper
tions.
7-8
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IV. PRACTICAL CONSIDERATIONS

Scalable systems of optical microtraps based on the di
force can be realized by focusing a single red-detuned l
beam with a microlens array@19,21#. The temporal evolution
of the trap separation as shown in Fig. 1 can be realized~i!
by using two parallel laser beams focused in such a way
the trapping potentials are longitudinally shifted along t
common laser beam direction or~ii ! by illuminating the mi-
crolens array with two laser beams under slightly differe
angles with the possible inclusion of an additional tw
dimensional confining potential perpendicular to the dir
tion of the trap displacement@19#. For the parameters w
used in the gate simulations, the minimum distance
aamin;2 corresponds to a separation of the traps of 1mm
which is achievable in the present optical microtraps@21#.
With laser powers of 1–10 mW per trap, rubidium atoms c
be trapped with typical trapping frequencies along the la
beam direction ofvx;104-105 s21 while the transverse
trapping frequencies can be one or two orders of magnit
larger @19#. Additionally, sideband cooling could be applie
to cool the atoms to the ground state of each trap in
dimensions.

In the optical microtrap experiments, the trapping pote
tial is Gaussian shaped with typical depths of 1–10 m
3kB @19#. For a single trap it is thus a good approximation
assume a harmonic potential for the lower-lying states.
two traps being close together the actual potentials will
viate from the form assumed in Eq.~3!. Nevertheless, it is
possible to generalize the methods applied here to these
ticular potentials.

Let us discuss how the error rate of&1% arising from
nonadiabatic effects as discussed in Sec. III A modifies
this particular implementation. The lifetime of the atoms
the traps is about 100–1000 ms. In this case coherenc
mostly limited by spontaneous scattering of photons. S
scattering processes occur in;10 ms but as shown in photo
echo experiments with strongly confining trapping potenti
@39# one atom scatters approximately 50 photons during
coherence time. For the parameters from Fig. 6~b! this gives
rise to a qubit error rate of another 2% such that the to
error rate is approximately 3%. If furthermore single-s
addressing is desired before and after the operation,
typical initial and final distances between the traps have to
about 5–20mm which for rubidium meansaamax510–40
instead ofaamax55 which we used in our previous calcula
tions. It is straightforward to estimate that the time need
for the complete process in this case ranges between 18
40 ms with an error rate due to nonadiabatic couplings
other vibrational states of 4– 8%. Taking into account
contributions from the spontaneous scattering the cumul
qubit error rate can finally be estimated to lie between
and 12% which should be enough for proof-of-principle e
periments.

In a recent paper, Charronet al. @28# proposed the real
ization of a phase gate in an optical lattice where the qu
were also implemented in the motional states. Two lin
counterpropagating beams from the fundamental and
harmonic of a CO2 laser were used to produce an intens
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gradient optical lattice. The barrier between two neighbor
traps could be raised or lowered by changing the inten
ratio between the two beams. We notice that the realiza
of a ASWAP gate as discussed here should also be possib
this setup although the implementation in optical microtra
presents some advantages such as being not sensitive t
phase fluctuations of the lasers.

V. CONCLUSION

We have investigated quantum computation in optical m
crotraps with the qubits implemented in the motional sta
of neutral atoms, and tunneling and cold controlled collisio
accounting for the interaction between two different qub
A time-dependent two-particle orthogonal basis has been
troduced to simulate the gate operation and to compute
tanglement throughout the whole gate process. The bos
statistic nature of the particles and its role in entanglem
has been discussed in detail. We have demonstrated th
pability of optical microtraps to realize a high-fidelityASWAP

gate operation in the few tens of milliseconds range. Fina
some practical considerations for the physical implemen
tion of this quantum gate have been discussed.
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APPENDIX A: GRAM-SCHMIDT
ORTHONORMALIZATION

In this appendix we will show how to construct the tim
dependent orthonormal single-particle states, denoted byu ī &L

and u ī &R , from the harmonic oscillator energy eigenstat
u i &L and u i &R for the left and the right trap, respectively. W
start by defining states involving one state of each trap:

u i &6[
1

A2
@ u i &L6~21! i u i &R] i 50,1,2,3, . . . , ~A1!

where the superscript1 (2) indicates positive~negative!
parity with respect to the middle between the two traps.
then group these states according to their parity in two s
S65$u0&6,u1&6, . . . % and focus first on the positive parit
set S1. This set contains states that are neither orthogo
nor normalized. To perform the orthonormalization, we u
the Gram-Schmidt~GM! method starting with the following
normalized function:
7-9
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f0
1~x,a![

^xu0&1

E u^xu0&1u2dx

. ~A2!

Then, we define the first linearly independent functionf1
1 as

f1
1~x,a!5

^xu1&11a10f0
1~x,a!

E u^xu1&11a10f0
1~x,a!u2dx

, ~A3!

where a1052*f0
1(x,a)^xu1&1dx which guaranties

^f0
1uf1

1&50. We repeat this procedure to obtain the r
of the linearly independent functionsf2

1 ,f3
1 , . . . with

positive parity. In an analogous way, we determine fro
S2 the set of linearly independent function
$f0

2 ,f1
2 ,f2

2 ,f3
2 , . . . %. An important feature of the GM

method when applied to a set of states with the same pari
that the constructed orthonormal states retain the parity
the original set of states. Thus states from$f i

1% and $f i
1%

have positive and negative parity, respectively, and theref
the whole set$f0

6 ,f1
6 ,f2

6 ,f3
6 , . . . % is orthonormal. Ex-

plicitly, the first four orthonormalized functions read

f0
6~x,a!5j0

6~a!^xu0&6, ~A4a!

f1
6~x,a!5j1

6~a!S ^xu1&66
xa3/2

A4 4p
e2a2a2

^xu0&7D ,

~A4b!

where

j0
6~a!5

1

A16e2a2a2
, ~A5a!

j1
6~a!5

ea2a2

A~ea2a2
61!~ea2a2

2e2a2a2
62a2a2!

.

~A5b!

For the sake of brevity, we do not explicitly show the an
lytical expressions for the rest of thef i

6 .
Once we have obtained the orthonormal set$f i

6%, it is
straightforward to write down the single-particle basis th
we will use,

^xu ī &L5
1

A2
~f i

11f i
2!, ~A6a!

^xu ī &R5~21! i
1

A2
~f i

12f i
2!, ~A6b!

These states are orthonormal due to the orthonormality of
f i

6 and in the limitaa@1 become the corresponding ha
monic oscillator energy eigenstates for each trap. These
orthonormal states do not have in general a well-defined
ity with respect to the center of the corresponding trap bu
04231
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is straightforward to check from Eqs.~A6! that they satisfy
the following property under parity transformation with r
spect to the middle of the traps:

^xu ī &L,R°~21! i^xu ī &R,L . ~A7!

APPENDIX B: UNIVERSALITY OF THE ASWAP GATE

Our goal here is to write down the sequence of ste
required to build the controlled-NOT gate, which, in the com-
putational basis u0&Au0&B , u0&Au1&B , u1&Au0&B , and
u1&Au1&B , reads

UCNOT5S 1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

D , ~B1!

from theASWAP gate

UASWAP5S 1 0 0 0

0
11 i

2

12 i

2
0

0
12 i

2

11 i

2
0

0 0 0 1

D . ~B2!

The single-qubit operations we need are on one hand
Hadamard gate

H5
1

A2
S 1 1

1 21D , ~B3!

and on the other hand the following combination of ident
and Paulisz matrices:

s5S 1 0

0 2 i D 5e2 i
p
4 Ie2 i

p
2 sz. ~B4!

Let us call HA,B and sA,B the corresponding single-qub
operations for qubitA or B. Now it is easy to check that the
following combination of single-qubit operations andASWAP

gates yields the phase gate:

UPHASE5sA
21sBUASWAPsA

2UASWAP5S 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 21

D .

~B5!

This sequence is not unique, and more sophisticated
quences involving single-qubit operations on only one of
qubits can be implemented@4#. Finally, to obtain the
controlled-NOT gate it is enough to apply a Hadamard ga
on the qubitA at both sides of Eq.~B5!, i.e.,

UCNOT5HAUPHASEHA . ~B6!
7-10
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