29 research outputs found

    Observations of Extreme Wildfire Enhancements of CH3OH, HCOOH, and PAN over the Canadian High Arctic

    Full text link
    Wildfires are a common occurrence in many parts of the globe and can emit significant quantities of trace gases and particulate matter, negatively impacting air quality on large spatial scales. Among the various trace gases emitted by wildfires are volatile organic compounds (VOCs). Three VOCs that are of particular importance are methanol (CH3OH), formic acid (HCOOH), and peroxyacetyl nitrate (PAN). CH3OH is the one of the most abundant VOCs in the atmosphere, and it influences the budgets of many tropospheric species including the hydroxyl radical, carbon monoxide, formaldehyde, and ozone. HCOOH is the most abundant tropospheric carboxylic acid, and thus can have significant impacts on atmospheric acidity, particularly in remote regions such as the Arctic. Lastly, PAN is a key, thermally unstable reservoir species of tropospheric nitrogen radicals (NOx = NO + NO2), controlling the production of tropospheric ozone, and contributing to the ‘Arctic haze’ pollution phenomenon at high latitudes.During August 2017, two independent large-scale wildfires in British Columbia and the Northwest Territories of Canada generated vast smoke plumes that merged and were subsequently transported to the high Arctic. Simultaneous observations by a high-resolution ground-based Fourier transform infrared (FTIR) spectrometer at the Polar Environment Research Laboratory (PEARL) in Eureka, Nunavut (80.05°N, 86.42°W), and the Infrared Atmospheric Sounding Interferometer (IASI) satellite instruments display extreme enhancements in these three species relative to background concentrations during the fire-affected period in late August 2017, demonstrating the long-range transport and secondary formation of these typically short-lived species. Initial results of the analysis of this unique biomass burning event will be presented, including comparisons of observations with the GEOS-Chem global chemical transport model.info:eu-repo/semantics/nonPublishe

    Unprecedented atmospheric ammonia concentrations detected in the high Arctic from the 2017 Canadian wildfires

    Get PDF
    Abstract From 17-22 August 2017 simultaneous enhancements of ammonia (NH3), carbon monoxide (CO), hydrogen cyanide (HCN), and ethane (C2H6) were detected from ground-based solar absorption Fourier transform infrared (FTIR) spectroscopic measurements at two high-Arctic sites: Eureka (80.05°N, 86.42°W) Nunavut, Canada and Thule (76.53°N, 68.74°W), Greenland. These enhancements were attributed to wildfires in British Columbia and the Northwest Territories of Canada using FLEXPART back-trajectories and fire locations from Moderate Resolution Imaging Spectroradiometer (MODIS) and found to be the greatest observed enhancements in more than a decade of measurements at Eureka (2006-2017) and Thule (1999-2017). Observations of gas-phase NH3 from these wildfires illustrates that boreal wildfires may be a considerable episodic source of NH3 in the summertime high Arctic. Comparisons of GEOS-Chem model simulations using the Global Fire Assimilation System (GFASv1.2) biomass burning emissions to FTIR measurements and Infrared Atmospheric Sounding Interferometer (IASI) measurements showed that the transport of wildfire emissions to the Arctic was underestimated in GEOS-Chem. However, GEOS-Chem simulations showed that these wildfires contributed to surface-layer NH3 and enhancements of 0.01-0.11 ppbv and 0.05-1.07 ppbv, respectively, over the Canadian Archipelago from 15-23 August 2017

    An evaluation of IASI-NH\u3csub\u3e3\u3c/sub\u3e with ground-based Fourier transform infrared spectroscopy measurements

    Get PDF
    Global distributions of atmospheric ammonia (NH3) measured with satellite instruments such as the Infrared Atmospheric Sounding Interferometer (IASI) contain valuable information on NH3 concentrations and variability in regions not yet covered by ground-based instruments. Due to their large spatial coverage and (bi-)daily overpasses, the satellite observations have the potential to increase our knowledge of the distribution of NH3 emissions and associated seasonal cycles. However the observations remain poorly validated, with only a handful of available studies often using only surface measurements without any vertical information. In this study, we present the first validation of the IASI-NH3 product using ground-based Fourier transform infrared spectroscopy (FTIR) observations. Using a recently developed consistent retrieval strategy, NH3 concentration profiles have been retrieved using observations from nine Network for the Detection of Atmospheric Composition Change (NDACC) stations around the world between 2008 and 2015. We demonstrate the importance of strict spatio-temporal collocation criteria for the comparison. Large differences in the regression results are observed for changing intervals of spatial criteria, mostly due to terrain characteristics and the short lifetime of NH3 in the atmosphere. The seasonal variations of both datasets are consistent for most sites. Correlations are found to be high at sites in areas with considerable NH3 levels, whereas correlations are lower at sites with low atmospheric NH3 levels close to the detection limit of the IASI instrument. A combination of the observations from all sites (Nobs = 547) give a mean relative difference of −32.4 ± (56.3) %, a correlation r of 0.8 with a slope of 0.73. These results give an improved estimate of the IASI-NH3 product performance compared to the previous upper-bound estimates (−50 to +100 %)

    Bias correction of OMI HCHO columns based on FTIR and aircraft measurements and impact on top-down emission estimates

    Get PDF
    Spaceborne formaldehyde (HCHO) measurements constitute an excellent proxy for the sources of non-methane volatile organic compounds (NMVOCs). Past studies suggested substantial overestimations of NMVOC emissions in state-of-the-art inventories over major source regions. Here, the QA4ECV (Quality Assurance for Essential Climate Variables) retrieval of HCHO columns from OMI (Ozone Monitoring Instrument) is evaluated against (1) FTIR (Fourier-transform infrared) column observations at 26 stations worldwide and (2) aircraft in situ HCHO concentration measurements from campaigns conducted over the USA during 2012–2013. Both validation exercises show that OMI underestimates high columns and overestimates low columns. The linear regression of OMI and aircraft-based columns gives ΩOMI_{OMI}=0,651 Ωairc_{airc}+2,95 x 1015^{15}, molec. cm2^{-2} , with ΩOMI_{OMI} and Ωairc_{airc} the OMI and aircraft-derived vertical columns, whereas the regression of OMI and FTIR data gives ΩOMI_{OMI}= 6,59 ΩFTIR_{FTIR} + 2.02 x 1015^{15}, molec. cm2^{-2} . Inverse modelling of NMVOC emissions with a global model based on OMI columns corrected for biases based on those relationships leads to much-improved agreement against FTIR data and HCHO concentrations from 11 aircraft campaigns. The optimized global isoprene emissions (\sim 445 Tgyr1^{-1}) are 25 % higher than those obtained without bias correction. The optimized isoprene emissions bear both striking similarities and differences with recently published emissions based on spaceborne isoprene columns from the CrIS (Cross-track Infrared Sounder) sensor. Although the interannual variability of OMI HCHO columns is well understood over regions where biogenic emissions are dominant, and the HCHO trends over China and India clearly reflect anthropogenic emission changes, the observed HCHO decline over the southeastern USA remains imperfectly elucidated

    Characterization and potential for reducing optical resonances in Fourier transform infrared spectrometers of the Network for the Detection of Atmospheric Composition Change (NDACC)

    Get PDF
    Although optical components in Fourier transform infrared (FTIR) spectrometers are preferably wedged, in practice, infrared spectra typically suffer from the effects of optical resonances (“channeling”) affecting the retrieval of weakly absorbing gases. This study investigates the level of channeling of each FTIR spectrometer within the Network for the Detection of Atmospheric Composition Change (NDACC).Part of this work was supported by Ministerio de Economía y Competitividad from Spain (project INMENSE no. CGL2016-80688-P). The Altzomoni site UNAM (DGAPA (grant nos. IN111418 and IN107417)) was supported by the CONACYT (grant no. 290589) and PASPA. This work has been supported by the Federal Ministry of Education and Research (BMBF) Germany in the project TroStra (grant no. 01LG1904A)

    NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances

    Get PDF
    Among the more than 20 ground-based FTIR (Fourier transform infrared) stations currently operating around the globe, only a few have provided formaldehyde (HCHO) total column time series until now. Although several independent studies have shown that the FTIR measurements can provide formaldehyde total columns with good precision, the spatial coverage has not been optimal for providing good diagnostics for satellite or model validation. Furthermore, these past studies used different retrieval settings, and biases as large as 50% can be observed in the HCHO total columns depending on these retrieval choices, which is also a weakness for validation studies combining data from different ground-based stations. For the present work, the HCHO retrieval settings have been optimized based on experience gained from past studies and have been applied consistently at the 21 participating stations. Most of them are either part of the Network for the Detection of Atmospheric Composition Change (NDACC) or under consideration for membership. We provide the harmonized settings and a characterization of the HCHO FTIR products. Depending on the station, the total systematic and random uncertainties of an individual HCHO total column measurement lie between 12% and 27% and between 1 and 11x1014 moleccm-2, respectively. The median values among all stations are 13% and 2.9x1014 moleccm-2 for the total systematic and random uncertainties. This unprecedented harmonized formaldehyde data set from 21 ground-based FTIR stations is presented and its comparison with a global chemistry transport model shows consistency in absolute values as well as in seasonal cycles. The network covers very different concentration levels of formaldehyde, from very clean levels at the limit of detection (few 1013moleccm-2) to highly polluted levels (7x1016moleccm-2). Because the measurements can be made at any time during daylight, the diurnal cycle can be observed and is found to be significant at many stations. These HCHO time series, some of them starting in the 1990s, are crucial for past and present satellite validation and will be extended in the coming years for the next generation of satellite missions

    NDACC harmonized formaldehyde time-series from 21 FTIR stations covering a wide range of column abundances

    Get PDF
    Among the more than 20 ground-based FTIR (Fourier transform infrared) stations currently operating around the globe, only a few have provided formaldehyde (HCHO) total column time series until now. Although several independent studies have shown that the FTIR measurements can provide formaldehyde total columns with good precision, the spatial coverage has not been optimal for providing good diagnostics for satellite or model validation. Furthermore, these past studies used different retrieval settings, and biases as large as 50 % can be observed in the HCHO total columns depending on these retrieval choices, which is also a weakness for validation studies combining data from different ground-based stations. For the present work, the HCHO retrieval settings have been optimized based on experience gained from past studies and have been applied consistently at the 21 participating stations. Most of them are either part of the Network for the Detection of Atmospheric Composition Change (NDACC) or under consideration for membership. We provide the harmonized settings and a characterization of the HCHO FTIR products. Depending on the station, the total systematic and random uncertainties of an individual HCHO total column measurement lie between 12 % and 27 % and between 1 and 11×1014 molec cm−2, respectively. The median values among all stations are 13 % and 2.9×1014 molec cm−2 for the total systematic and random uncertainties. This unprecedented harmonized formaldehyde data set from 21 ground-based FTIR stations is presented and its comparison with a global chemistry transport model shows consistency in absolute values as well as in seasonal cycles. The network covers very different concentration levels of formaldehyde, from very clean levels at the limit of detection (few 1013 molec cm−2) to highly polluted levels (7×1016 molec cm−2). Because the measurements can be made at any time during daylight, the diurnal cycle can be observed and is found to be significant at many stations. These HCHO time series, some of them starting in the 1990s, are crucial for past and present satellite validation and will be extended in the coming years for the next generation of satellite missions.This study has been supported by the ESA PRODEX project TROVA (2016–2018) funded by the Belgian Science Policy Office (Belspo)

    TROPOMI–Sentinel-5 Precursor formaldehyde validation using an extensive network of ground-based Fourier-transform infrared stations

    Get PDF
    TROPOMI (the TROPOspheric Monitoring Instrument), on board the Sentinel-5 Precursor (S5P) satellite, has been monitoring the Earth\u27s atmosphere since October 2017 with an unprecedented horizontal resolution (initially 7 km2^{2}×3.5 km2^{2}, upgraded to 5.5 km2^{2}×3.5 km2^{2} in August 2019). Monitoring air quality is one of the main objectives of TROPOMI; it obtains measurements of important pollutants such as nitrogen dioxide, carbon monoxide, and formaldehyde (HCHO). In this paper we assess the quality of the latest HCHO TROPOMI products versions 1.1.(5-7), using ground-based solar-absorption FTIR (Fourier-transform infrared) measurements of HCHO from 25 stations around the world, including high-, mid-, and low-latitude sites. Most of these stations are part of the Network for the Detection of Atmospheric Composition Change (NDACC), and they provide a wide range of observation conditions, from very clean remote sites to those with high HCHO levels from anthropogenic or biogenic emissions. The ground-based HCHO retrieval settings have been optimized and harmonized at all the stations, ensuring a consistent validation among the sites. In this validation work, we first assess the accuracy of TROPOMI HCHO tropospheric columns using the median of the relative differences between TROPOMI and FTIR ground-based data (BIAS). The pre-launch accuracy requirements of TROPOMI HCHO are 40 %–80 %. We observe that these requirements are well reached, with the BIAS found below 80 % at all the sites and below 40 % at 20 of the 25 sites. The provided TROPOMI systematic uncertainties are well in agreement with the observed biases at most of the stations except for the highest-HCHO-level site, where it is found to be underestimated. We find that while the BIAS has no latitudinal dependence, it is dependent on the HCHO concentration levels: an overestimation (+26±5 %) of TROPOMI is observed for very low HCHO levels (8.0×1015^{15} molec. cm2^{-2}). This demonstrates the great value of such a harmonized network covering a wide range of concentration levels, the sites with high HCHO concentrations being crucial for the determination of the satellite bias in the regions of emissions and the clean sites allowing a small TROPOMI offset to be determined. The wide range of sampled HCHO levels within the network allows the robust determination of the significant constant and proportional TROPOMI HCHO biases (TROPOMI =+1.10±0.05 ×1015^{15}+0.64±0.03 × FTIR; in molecules per square centimetre). Second, the precision of TROPOMI HCHO data is estimated by the median absolute deviation (MAD) of the relative differences between TROPOMI and FTIR ground-based data. The clean sites are especially useful for minimizing a possible additional collocation error. The precision requirement of 1.2×1016^{16} molec. cm2^{-2} for a single pixel is reached at most of the clean sites, where it is found that the TROPOMI precision can even be 2 times better (0.5–0.8×1015^{15} molec. cm2^{-2} for a single pixel). However, we find that the provided TROPOMI random uncertainties may be underestimated by a factor of 1.6 (for clean sites) to 2.3 (for high HCHO levels). The correlation is very good between TROPOMI and FTIR data (R=0.88 for 3 h mean coincidences; R=0.91 for monthly means coincidences). Using about 17 months of data (from May 2018 to September 2019), we show that the TROPOMI seasonal variability is in very good agreement at all of the FTIR sites. The FTIR network demonstrates the very good quality of the TROPOMI HCHO products, which is well within the pre-launch requirements for both accuracy and precision. This paper makes suggestions for the refinement of the TROPOMI random uncertainty budget and TROPOMI quality assurance values for a better filtering of the remaining outliers

    The Influence of Biomass Burning on the Arctic Atmosphere

    No full text
    Evaluating the influence of biomass burning on the Arctic requires continuous and long-term measurements of the transported emissions. In this thesis, ground-based Fourier transform infrared (FTIR) solar-absorption spectroscopic measurements at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada from 2006-2018 are used to retrieve the atmospheric abundance of the biomass burning species CO, HCN, C2H6, C2H2, CH3OH, H2CO, HCOOH and NH3 . The retrievals of NH3 from Eureka FTIR measurements are the first long-term ground-based measurements of NH3 in the high Arctic. Measurements of NH3, CO, HCN and C2H6 were simultaneously enhanced in July-August 2014 and attributed to the 2014 Northwest Territories wildfires. Enhancements were observed in FTIR measurements at Toronto, and due to the differences in traveltimes between the sites, an approximate 2-day lifetime of NH3 in a smoke plume was determined, allowing for NH3 to undergo long-range transport and therefore suggesting that boreal wildfires may be a considerable episodic NH3 source to the Arctic. The greatest enhancements of NH3, CO, HCN, and C2H6 were observed from FTIR measurements at Eureka (2006-2017) and Thule, Greenland (2006-2017) from 17-22 August 2017 and attributed to the 2017 British Columbia and Northwest Territories wild- fires. A GEOS-Chem simulation illustrated that these wildfires contributed to surface-layer NH3 enhancements in the Canadian Archipelago of 0.01-0.11 ppbv from 15-23 August 2017, 0.14-5.50 times the background due to local seabird-colony sources, further indicating that boreal wildfire NH3 is an important episodic source of NH3 in the summertime high Arctic in addition to the persistent seabird-colony source. Detection of wildfire pollution events was performed for Eureka FTIR measurements and nine other Northern high- and mid-latitude Network for the Detection of Atmospheric Composition Change (NDACC) FTIR sites from 2003-2018. Enhancements of CO were detected and correlated with simultaneous enhancements of the biomass burning tracers HCN and C2H6, providing a means of wildfire pollution detection. Source attribution of the detected events was performed using a GEOS-Chem tagged CO simulation. Boreal North America and boreal Asia were the largest contributors to anomalous enhancements at all sites, with a recent increase in the boreal North American contribution from 2013-2018.Ph.D
    corecore