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Abstract. Among the more than twenty ground-based FTIR (Fourier Transform infrared) stations currently operating around

the globe, only a few have provided formaldehyde (HCHO) total columns time-series until now. Although several independent

studies have shown that the FTIR measurements can provide accurate and precise formaldehyde total columns, the spatial

coverage has not been optimal for providing good diagnostics for satellite or model validation. Furthermore, these past studies

used different retrieval settings, and biases as large as 50% can be observed in the HCHO total columns depending on these5

retrieval choices, which is also a weakness for validation studies combining data from different ground-based stations.

For the present work, the HCHO retrieval settings have been optimized based on experience gained from the past studies and

have been applied consistently at the 21 participating stations, most of them are either part of the Network for the Detection

of Atmospheric Composition Change (NDACC), or under consideration for membership. We provide the harmonized settings

and a characterization of the HCHO FTIR products. Depending on the station, the systematic and random uncertainties of an10
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individual HCHO total column measurement lie between 11 and 31%; and between 1 and 11×1014 molec/cm2, respectively,

with median values among all stations of 14% and 2.6×1014 molec/cm2.

This unprecedented harmonized formaldehyde data set from 21 ground-based FTIR stations is presented and its comparison to

a global chemistry transport model shows its consistency, in absolute values as well as in seasonal cycles. The network covers

very different concentration levels of formaldehyde, from very clean levels at the limit of detection (few 1013 molec/cm2) to

highly polluted levels (7×1016 molec/cm2). Because the measurements can be made at any time during daylight, the diurnal5

cycle can be observed and is found to be significant at many stations. These HCHO time-series, some of them starting in the

1990’s, are crucial for past and present satellite validation, and will be extended in the coming years for the next generation of

satellite missions.

1 Introduction10

Through reactions with hydroxyl radical (OH) and NOx, the volatile organic compounds (VOCs) exert a strong influence

on the oxidizing capacity of the atmosphere. These reactions produce ozone and secondary organic aerosols, which affect

air quality and global climate. Given their short lifetimes (from a few minutes to a few hours for the most reactive ones,

Kesselmeier and Staudt (1999)) and their different sources depending on geographical locations, it is very difficult to derive a

global atmospheric burden for most of the VOCs from current measurements. The observation of formaldehyde (HCHO), which15

is an intermediate product of the degradation of many non-methane VOCs (NMVOCs) and has a lifetime of only few hours,

allows to constrain the NMVOCs emissions and test our understanding of the complex and still uncertain degradation mecha-

nisms of these NMVOCs (Stavrakou et al., 2009). The use of satellite HCHO measurements in combination with tropospheric

chemistry transport models to derive NMVOCs emissions has been the subject of several past studies (e.g. Palmer et al. (2003);

Millet et al. (2008); Stavrakou et al. (2009); Fortems-Cheiney et al. (2012); Barkley et al. (2013); Marais et al. (2014)). The20

past and present HCHO satellite data sets include those from GOME (1996-2003), SCIAMACHY (2003-2012), OMI (2004-),

GOME2A (2006-), OMPS (2011-), GOME2B (2012-), and very recently TROPOMI (2017-). The NMVOCs emissions de-

rived from the top-down approaches using these satellite data sets rely on the accuracy of the measurements. An indirect way

to test these accuracies is to compare the emission budgets obtained using two different satellite data sets as in Barkley et al.

(2013) for SCIAMACHY and OMI, or in Stavrakou et al. (2015) for OMI and GOME2. While the global emission budgets25

are in general consistent (Stavrakou et al., 2015), there are large differences on the top-down estimates on a regional scale, e.g.

differences up to nearly 50% are observed over Amazonia between SCIAMACHY and OMI (Barkley et al., 2013), and up to

nearly 25% between GOME2 and OMI (Stavrakou et al., 2015). To conclude unambiguously whether these differences are due

to biases in the satellite products (due to retrieval settings, vertical sensitivities, horizontal resolution,...) or to the diurnal cycle

of formaldehyde (SCIAMACHY and GOME-2 measuring in the morning and OMI in the afternoon) requires validation with30

independent and accurate ground-based measurements (Barkley et al., 2013; De Smedt et al., 2015; Stavrakou et al., 2015).
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At present, validation studies of HCHO satellite products have been performed at few locations only, mainly using aircraft

data (Martin et al., 2004; Barkley et al., 2013; Zhu et al., 2016), the MAX-DOAS (Multi-AXis Differential Optical Absorption

Spectroscopy) technique (Wittrock et al., 2006; De Smedt et al., 2015) and the FTIR (Fourier Transform Infra-Red) technique

(Jones et al., 2009; Vigouroux et al., 2009; De Smedt et al., 2015). This is not sufficient to provide a good picture of the satel-

lites’ accuracy, especially given the high geographical variability of formaldehyde. A lot of effort is therefore currently under-

way to increase the number of ground-based stations providing HCHO data, using the DOAS or the FTIR technique, initiated

in view of the TROPOMI Cal/Val activities. This paper presents the work accomplished in this direction using FTIR measure-5

ments at most of the NDACC (Network for the Detection of Atmospheric Composition Change) stations, and including some

more recent observing stations, that will be also part of the NDACC in the near future.

Up to now, time-series of HCHO total columns have been studied at six FTIR stations only, among the more than 20 FTIR

sites currently in operation: Ny-Alesund (Notholt et al., 1997), Wollongong (Paton-Walsh et al., 2005), Lauder (Jones et al.,

2009), Reunion Island (Vigouroux et al., 2009), Eureka (Viatte et al., 2014), and Jungfraujoch (Franco et al., 2015). We note10

that HCHO has also been measured by the JPL MkIV instrument (Toon, 1991) at various ground-based sites since 1985 (see

http://mark4sun.jpl.nasa.gov/ground.html), although these data are not used in this work due to their very different acquisition,

and analysis procedures. The main reasons for having so few FTIR HCHO data available are: 1) that it is challenging to find

robust retrieval settings for this species that has weak absorption signatures in the infrared, which are in addition surrounded

by strong lines from interfering gases; 2) that HCHO is not part of the NDACC FTIR target species (which are O3, HNO3, HF,15

HCl, CO, CH4, N2O, ClONO2, HCN, and C2H6, publicly available at http://www.ndsc.ncep.noaa.gov/clickmap/). In the above

cited studies, different retrieval settings are used, although the retrieved HCHO total columns can be very sensitive to some of

them: e.g. a positive bias of 30% or even 50% is found at Reunion Island if the settings of Franco et al. (2015) or Jones et al.

(2009) are used, respectively, instead of those from Vigouroux et al. (2009). Although these high biases are consistent with the

uncertainty budgets, it is important, to facilitate the interpretation of a satellite or model validation, to harmonize the settings20

among the stations. Therefore, in the present work, we have set up common retrieval settings that can be used at any ground-

based site, even under very humid conditions or low HCHO concentrations. These settings will be described in Sect. 2 together

with a characterization of the retrieved HCHO products, i.e., their averaging kernels and uncertainty budget. The complete

time-series of HCHO total columns obtained at the 21 participating stations are shown in Sect. 3, as well as the diurnal cycles

and a short assessment of the long-term trends. We then use the chemistry-transport model IMAGES (Stavrakou et al., 2015),25

which provides data for the 2003-2016 period, to show the consistency of our harmonized FTIR data sets: comparisons between

FTIR and IMAGES monthly means time-series and seasonal cycle at the 21 stations are presented in Sect. 4.

2 Ground-based FTIR HCHO data: description and characterization

2.1 FTIR HCHO monitoring

Table 1 lists the ground-based FTIR stations included in this study, while Fig. 1 shows their geographical distribution. These30

stations perform regular solar absorption measurements, under clear-sky conditions, using either the high-resolution spec-
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Figure 1. Location of the FTIR stations providing HCHO total columns.

trometers Bruker 120 M, 125 M, 120 HR, and/or 125 HR which can achieve a spectral resolution of 0.0035 cm−1 or better,

or the Bomem DA8 which can achieve a spectral resolution of 0.004 cm−1. The only lower spectral resolution spectrometer

(0.06 cm−1) used in this study is the Bruker Vertex at Mexico City. This instrument is not accepted by the NDACC FTIR

standards at present, therefore Mexico City is the only site in this study that will not be part of NDACC.

The formaldehyde spectral signatures used in ground-based infrared measurements lie in the 3.6 µm region and belong to

the ν1 and ν5 bands. This implies that for HCHO, a CaF2 or KBr beamsplitter and a nitrogen-cooled InSb detector are used,

together with an optical filter which usually covers the 2400-3310 cm−1 region (so-called NDSC-3 filter, see e.g. Senten et al.5

(2008)). At St-Petersburg a broader filter is used (1700-3400 cm−1). The spectral resolution can be reduced in order to increase

the signal to noise ratio (SNR). In practice, the spectra used in the present study have a resolution between 0.0035 and 0.009

cm−1, except for Mexico city (0.075 cm−1).

HBr or N2O cell measurements are regularly performed to verify the alignment of the instruments. The instrument line

shape (ILS) can be obtained by analyzing these cell measurements using the LINEFIT program (Hase et al., 1999). This ILS10

can impact the shape of gas absorption lines, and its determination by LINEFIT can be used as an input parameter in the

forward model of the retrieval codes (Sect. 2.2).

2.2 Harmonized retrieval strategy

We refer to e.g. Pougatchev et al. (1995); Hase et al. (2004) for more details on the FTIR retrieval principles. Total columns of

atmospheric gases, but also volume mixing ratio vertical profiles are obtained from their pressure and temperature dependent15

absorption lines. As seen in Table 1, two retrieval algorithms are used in the NDACC FTIR community: PROFITT9 (Hase et al.,

2006), and SFIT2 (Pougatchev et al., 1995) which has been updated to SFIT4 09.4.4. It has been demonstrated in Hase et al.

(2004) that the profiles and total column amounts retrieved from these two different algorithms under identical conditions are

in excellent agreement.
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Table 1. Characteristics of the FTIR stations contributing to the present work: location and altitude (in km a.s.l.), time-period used in the

present study, instrument type, retrieval code, team.

Station Latitude Longitude Altitude Time-period Instrument Code Team

Eureka 80.05◦ N 86.42◦ W 0.61 2006–2016 Bruker 125 HR SFIT4 U. of Toronto

Ny-Alesund 78.92◦ N 11.92◦ E 0.02 1993–2017 Bruker 120/5 HR SFIT4 U. of Bremen

Thule 76.52◦ N 68.77◦ W 0.22 1999–2016 Bruker 120 M SFIT4 NCAR

Kiruna 67.84◦ N 20.40◦ E 0.42 1996–2016 Bruker 120/5 HR PROFFIT KIT / IMK–ASF

Sodankyla 67.37◦ N 26.63◦ E 0.19 2012–2017 Bruker 125 HR SFIT4 FMI & BIRA

St-Petersburg 59.88◦ N 29.83◦ E 0.02 2009–2017 Bruker 125 HR SFIT4 SPb State U.

Bremen 53.10◦ N 8.85◦ E 0.03 2004–2017 Bruker 125 HR SFIT4 U. of Bremen

Paris 48.97◦ N 2.37◦ E 0.06 2011–2016 Bruker 125 HR PROFFIT LERMA

Zugspitze 47.42◦ N 10.98◦ E 2.96 1995–2017 Bruker 120/5 HR PROFFIT KIT / IMK–IFU

Toronto 43.60◦ N 79.36◦ W 0.17 2002-2016 Bomem DA8 SFIT4 U. of Toronto

Boulder 40.04◦ N 105.24◦ W 1.61 2010-2016 Bruker 120 HR SFIT4 NCAR

Izaña 28.30◦ N 16.48◦ W 2.37 1999–2005 Bruker 120 M PROFFIT AEMET & KIT–ASF

2005–2016 Bruker 125 HR

Mauna Loa 19.54◦ N 155.57◦ W 3.40 1995–2016 Bruker 120/5 M SFIT4 NCAR

Mexico City 19.33◦ N 99.18◦ W 2.26 2013–2016 Bruker Vertex 80 PROFFIT UNAM

Altzomoni 19.12◦ N 98.66◦ W 3.98 2012–2016 Bruker 120/5 HR PROFFIT UNAM

Paramaribo 5.81◦ N 55.21◦ W 0.03 2004–2016 Bruker 120/5 M SFIT4 U. of Bremen

Porto Velho 8.77◦ S 63.87◦ W 0.09 2016–2017 Bruker 125 M SFIT4 BIRA

Saint-Denis 20.90◦ S 55.48◦ E 0.08 2004–2011 Bruker 120 M SFIT4 BIRA

2011-2013 Bruker 125HR

Maïdo 21.08◦ S 55.38◦ E 2.16 2013–2016 Bruker 125 HR SFIT4 BIRA

Wollongong 34.41◦ S 150.88◦ E 0.03 1996–2007 Bomem DA8 SFIT4 U. of Wollongong

2007–2016 Bruker 125 HR

Lauder 45.04◦ S 169.68◦ E 0.37 2001–2016 Bruker 120 HR SFIT4 NIWA

We summarize in Table 2 the forward model and retrieval parameters that have been harmonized. The forward model uses20

pressure and temperature profiles from NCEP (National Centers for Environmental Prediction) for each site, except that the

temporal resolution can vary depending on the retrieval team from daily means, 6-hourly ones, or even hourly interpolated

ones.

The dominant source of systematic uncertainty being the spectroscopic parameters, it is crucial that all stations use the

same spectroscopic database. We use the compilation from G. Toon (JPL), the so-called atm16 linelist, which is available

at http://mark4sun.jpl.nasa.gov/toon/linelist/linelist.html. In this atm16 linelist, the HCHO and N2O lines correspond to the5
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Table 2. Summary of the HCHO harmonized forward model and retrieval parameters. The micro-windows limits are given in cm−1.

Pressure and temperature NCEP

profiles

Spectroscopic database atm16 (=HITRAN 2012 for HCHO)

Solar lines SFIT4.09.4.4

Micro-windows MW #1: 2763.42 - 2764.17

MW #2: 2765.65 - 2766.01

MW #3: 2778.15 - 2779.1

MW #4: 2780.65 - 2782.0

Deweighted spectral 2780.967 - 2780.993 (O3)

sections 2781.42 - 2781.48 (CH4)

Retrieved species HCHO, HDO, CH4, O3,

N2O, solar lines

optional: CO2, H2O

a priori profiles WACCM v4

(except HDO and H2O)

Regularization Tikhonov L1

HITRAN 2012 database (Rothman et al., 2013); the water vapor and its isotopologues lines are from Toth 2003 1; some lines

of the other strong absorbing gases in the vicinity of HCHO (O3 and CH4) have been empirically adjusted when obvious

problems were found in the HITRAN 2012 database. For the CO solar lines, we use the linelist updated from Hase et al.

(2010), that are distributed in the NDACC community (SFIT4 package v09.4.4).

To avoid any bias between the stations due to different spectroscopic parameters, it is also mandatory to harmonize the

spectral micro-windows (MW) containing the HCHO signatures. The challenge of the HCHO retrievals is that this species5

has very weak absorption signatures in the infrared (below 1%), and it is therefore very important to minimize the impact

of the interfering gases having more intense signatures, either by avoiding micro-windows with strong interfering lines when

feasible, or by including them only in case they are very well fitted (e.g. no large residuals remain due to bad spectroscopic

or incorrect ILS parameters). In the past studies, while the micro-window spectral widths differ, some common HCHO sig-

1http://mark4sun.jpl.nasa.gov/data/spec/H2O/RAToth_H2O.tar
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natures were used: the two more intense signatures at about 2778.5 cm−1 and 2781.0 cm−1 were used in all previous stud-10

ies (Notholt et al., 1997; Paton-Walsh et al., 2005; Viatte et al., 2014; Jones et al., 2009; Vigouroux et al., 2009), except in

Franco et al. (2015) who discarded the 2781.0 cm−1 signature because of the bad residuals due to poorly fitted CH4 lines (from

HITRAN 2008, Rothman et al. (2009)). In Vigouroux et al. (2009), in which HITRAN 2004 (Rothman et al., 2005) was used,

the micro-windows containing these two stronger signatures were quite narrow (2778.20 - 2778.59; 2780.80 - 2781.15 cm−1),

in order to minimize residuals due to neighboring CH4 lines. With the empirically improved CH4 spectroscopy in atm16, we

can use larger windows (see Table 2 and Fig. 2), with the advantages of fixing more the background and the interfering species,5

leading to an improved precision and accuracy in the HCHO total columns. We keep the two narrow micro-windows used in

Vigouroux et al. (2009) and Franco et al. (2015) at about 2763.5 and 2765.8 cm−1, which contain less absorption from inter-

fering gases, but the gain in information, the so-called degrees of freedom for signal (DOFS, see Rodgers (2000)) is relatively

small (0.1-0.2, compared to about 1.0 to 1.5 from the two main windows).

We give in Fig. 2 an example of a spectrum calculated from the retrieval using a spectrum recorded on the 12-02-2014 at10

Maïdo and corresponding to a retrieved HCHO total column of 2.48×1015 molec/cm2. The corresponding residuals (calculated

- observed spectra) are shown in Fig. 3, when the spectroscopic parameters are taken from HITRAN 2012 and with the

atm16 empirical linelist. We can see the improvement in MW #1 obtained simply by changing the line position of an O3 line

(2763.8598 cm−1 instead of 2763.8588 cm−1). The spectroscopic parameters in MW #2 are the same in both cases, the little

improvement seen in this MW is due to the better fitting of the other MWs, that allows better calculated profiles for all gases.15

The CH4 line in MW #3 is poorly fitted using the HITRAN 2012 linelist, and the improvement in the atm16 is due to a change

in several spectroscopic parameters (line position, line intensity,...). The two more intense CH4 lines in MW #4 have also been

improved by using the atm16 linelist. However, to further improve the fits, one CH4 line and one O3 line were empirically

deweighted (see Table 2). The comparison of these two linelists shows the crucial need for good spectroscopic parameters in

order to obtain precise amounts of atmospheric gases. As seen in Fig. 3 (right panel), the residuals are not perfect and there20

is still room for further improvement in forward model parameters. The atm linelist created by G. Toon (JPL) is updated each

four years when HITRAN provides a new release, so that when the HITRAN linelist is improved and provides either similar

or better residuals than the atm linelist, the empirical parameters of atm are changed by the preferred official database.

In SFIT4 and PROFFIT retrieval codes, based on optimal estimation, a priori information (profile and regularization matrix)

needs to be provided. In this work, the formaldehyde a priori profiles, as well as all interfering species except water vapor25

and its isotopologues, were provided for each station from the model WACCM (Garcia et al., 2007); v4. A single profile for

each species is used in the time-series retrievals and corresponds to the mean of the model profiles calculated at each station

from 1980 to 2020. For H2O and HDO, which have a high atmospheric variability, it is usually preferred (except at the stations

Lauder, Mexico City and Altzomoni) to not use a single a priori profile: for each individual spectrum, the water vapor a

priori profiles are taken either from the 6-hourly vertical profiles provided by NCEP, or from independent preliminary profile30

retrievals. The H2O absorption being very weak in the chosen MWs, and the HDO profile being retrieved simultaneously with

HCHO, the impact of using a single a priori profile at the three cited stations is assumed to be small. For the regularization

matrix R, we followed Vigouroux et al. (2009) and Sussman et al. (2011) and used ad hoc Tikhonov (Tikhonov, 1963) L1
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Figure 2. Retrieved contributions of all fitted species in the four MWs (upper and middle panels) used in the analysis for a spectrum recorded

on 12-02-2014 at Maïdo and corresponding to a retrieved HCHO total columns of 2.48×1015 molec/cm2. The figures in the lower panel are

magnifications of the MWs #3 and #4.
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Figure 3. Residuals (calculated - observed spectrum) in each of the four MWs for the retrieval of a spectrum recorded on 12-02-2014 at

Maïdo and corresponding to a retrieved HCHO total columns of 2.48×1015 molec/cm2. The x-axis represents the wavenumber in cm−1. The

left panels are obtained when the HITRAN 2012 spectroscopy is used, and the right panels show the improvement made by using the atm16

linelist.
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regularization as described e.g. in Steck (2002), for the reason that we do not have realistic a priori covariance matrix Svar

from other measurements sources, especially with a good vertical resolution. The regularization matrix R = αL1
T L1 is used35

in most cases for the determination of HCHO low vertical resolution profiles, but also for profile retrievals of the interfering

species when improvement is observed compared to the fit of a single scaling factor (which is applied to the a priori profiles).

This is the case for HDO and CH4 for which profile retrievals are made, and at some stations for O3. For the stations Kiruna,

Izaña, Zugspitze, and Paris, a scaling of HCHO a priori profiles is preferred to a Tikhonov regularization, but due to the low

DOFS available for this species (see Sect. 2.3), this has little influence on the retrieved total columns (below 2% when tested5

at Maïdo). For the other stations, the α values are site dependent, since it can depend e.g. on the HCHO amounts or the SNR

of the spectra. Note that the SNR value can be the "real" one coming from the inherent noise in each spectrum, but also can

be chosen as an "effective" SNR, that is used as well as a regularization parameter. This effective SNR is smaller than the real

one, since the residuals in a spectral fit are not only coming from pure measurement noise but also from uncertainties in the

model parameters. The regularization choice (α and SNR if an effective one is used) is made at each station in order to obtain10

stable retrievals (no "overfitting") with significant decrease of the residuals (no "underfitting"), as in the well-known L-curve

method (Hans , 1992).

It is worth noting that another important model parameter is the instrumental line shape (ILS) since it impacts the gases

absorption line shapes. The treatment of ILS in the retrievals has not been harmonized yet among the stations because the

stability and quality of the alignment is site dependent and/or the instrument’s PIs have their own preferences. This is however15

another step toward full harmonization that should be done in the future within NDACC. At present, there are three options

for considering the ILS and we refer to Vigouroux et al. (2015) for more details. In the present work, the NIWA, NCAR and

University of Bremen stations use a constant and ideal ILS (both modulation efficiency and phase error), i.e. the spectrometers

are perfectly aligned. This is a valid approximation based upon LINEFIT ILS analysis of HBr cell spectra measurements

(Sect. 2.1). The IMK-ASF, LERMA and UNAM stations use fixed ILS parameters that are previously retrieved using the cell20

measurements and the LINEFIT code (Hase et al., 1999). For the other stations, the effective apodization parameter is retrieved

simultaneously with the target species profiles, while the phase error parameter is assumed to be ideal.

2.3 Characterization: averaging kernels and uncertainty budget

The vertical resolution and sensitivity of the retrieved HCHO products can be characterized by the averaging kernel matrix A

(Rodgers, 2000):25

A = (KT S−1
ǫ K+R)−1KT S−1

ǫ K, (1)

where K is the weighting function matrix that links the measurement vector y to the state vector x: y=Kx+ǫ, with ǫ represent-

ing the measurement error. In our retrievals, we assume Sǫ to be diagonal, with the diagonal elements being the inverse square

of the SNR. R is the regularization matrix which, in this work, has been chosen as the Tikhonov L1 matrix (see Sect. 2.2).

We give the trace of this averaging kernel matrix A for the elements corresponding to the HCHO profiles, the so-called30

DOFS in Table 3, for each station. The DOFS are ranging from 1.0 to 1.5, meaning that we can not provide much more than

10
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Figure 4. Upper panel: Averaging kernels (rows of A) and total column averaging kernel for four of the FTIR stations, with DOFS ranging

from 1.0 to 1.4. The total column averaging kernel is also shown in thick blue line (divided by 10 for visibility). The color code for the

different averaging kernels depending on their altitude is given in the color bar in km. Lower panel: a priori profiles from the WACCM v4

model (red), and the mean and standard deviation of the retrieved profiles, for the same four stations.

one piece of information on the vertical profile. This is the reason why only total columns of HCHO are discussed in this

paper, and not vertical profiles. We show in Fig. 4 (Upper panel) the averaging kernels (AK, rows of A), for four different

stations, having DOFS ranging from 1 (only scaling) to 1.5. Similar averaging kernels are obtained for the other stations with

similar DOFS (not shown). We can observe that, in each case, the AK peak at about the same altitude (8 km) with full-width-

at-half-maximum of about 16-18 km, showing that we have limited vertical resolution, and that we are sensitive to the whole

troposphere mainly, and to a lesser extent to the lowermost stratosphere. The total column averaging kernel (TotAK), to be

associated to the FTIR retrieved total columns, is plotted as well. The associated a priori profiles are also shown in Fig. 45

(Lower panel) for completeness, together with the mean and standard deviation of the retrieved profiles. As expected by the

low DOFS, the shape of the retrieved profiles is very similar to the shape of the a priori profiles.

The uncertainty budget is calculated following the formalism of Rodgers (2000), and can be divided into three different

sources: the measurement noise uncertainty (purely random), the forward model parameter uncertainties (random and system-

atic), and the smoothing error expressing the uncertainty due to the limited vertical resolution of the retrieval (random and10

systematic, but in the present work the systematic smoothing uncertainty turns out to be negligible). We give in Table 3, for

each station, the mean of the random uncertainty (square root of sum of squares of the measurement noise error and of all the

random forward model errors), the smoothing uncertainty, the total random uncertainty (square root sum of the squares of the

random error and the smoothing error), and the total systematic uncertainty (square root sum of the squares of all systematic

errors) on one individual HCHO FTIR total column measurement.15
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Table 3. Mean of the HCHO total columns (TC) and Degrees of Freedom for Signal (DOFS) obtained at each FTIR station. The stations with

strictly 1 DOFS (Kiruna, Izña, Zugzpitze, and Paris) only make a scaling of the HCHO a priori profile, i.e. no change in the vertical shape of

the a priori profile is allowed. We give, in 1014 molec/cm2, the mean of 1) the random uncertainty (Rand) on HCHO total column for an in-

dividual FTIR measurement (excluding the smoothing part); 2) the smoothing error (Smoo); 3) the total random error (=
√

Rand2 + Smoo2).

We also provide the total systematic uncertainty (in%). We give also the mean differences between two subsequent FTIR measurements

taken within 30 minutes, in both absolute (1014 molec/cm2) and percent units (Diff30). An asterisk (∗) indicates the PROFFIT stations.

Station DOFS mean TC Random Smoothing Total Random Systematic Diff30

Eureka 1.3 12.7 1.0 0.6 1.2 12.3% 1.5 (11.8%)

Ny-Alesund 1.6 15.8 1.8 0.5 1.9 14.5% 3.9 (24.6%)

Thule 1.1 15.7 1.3 0.9 1.5 16.9% 1.8 (12.3%)

Kiruna∗ 1 17.5 3.5 0.8 3.6 31.3% 0.7 (3.9%)

Sodankyla 1.1 25.4 1.5 1.7 2.3 14.1% 2.4 (9.7%)

St-Petersburg 1.4 59.4 2.6 2.1 3.3 15.4% 2.8 (5.0%)

Bremen 1.2 59.6 2.3 1.7 2.9 12.9% 3.1 (5.1%)

Paris∗ 1 73.0 5.3 1.4 5.5 17.1% 3.3 (4.8%)

Zugspitze∗ 1 12.3 2.2 0.5 2.3 26.0% 1.0 (7.7%)

Toronto 1.3 95.1 5.1 4.1 6.7 13.0% 19.3 (21.0%)

Boulder 1.1 57.6 2.6 3.9 4.7 12.9% 5.3 (8.6%)

Izaña∗ 1 20.4 3.3 0.2 3.3 22.0% 0.8 (4.2%)

Mauna Loa 1.1 10.1 1.4 1.0 1.8 13.0% 1.4 (13.7%)

Mexico City∗ 1.0 220.9 11.1 2.5 11.4 12.2% 24.0 (10.9%)

Altzomoni∗ 1.1 21.8 2.3 1.2 2.6 18.2% 2.3 (10.7%)

Paramaribo 1.5 64.3 3.4 1.3 3.6 14.7% 11.9 (19.7%)

Porto Velho 1.3 187.5 3.6 7.0 8.1 12.5% 7.3 (4.0%)

Saint-Denis 1.2 38.8 2.2 0.8 2.4 13.6% 2.8 (7.1%)

Maïdo 1.2 20.0 1.4 0.4 1.4 13.1% 1.1 (5.5%)

Wollongong 1.5 78.9 3.0 2.2 3.7 10.7% 11.6 (14.8%)

Lauder 1.4 25.6 1.5 0.4 1.6 12.5% 3.6 (15.0%)

Median 1.2 25.6 2.3 1.2 2.6 13.6% 2.8 (9.7%)

The random uncertainty given in Table 3 is dominated at all sites by the measurement noise whose error covariance matrix

Sn is calculated as:

Sn = GySǫGT
y , (2)
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where Sǫ is assumed to be diagonal, with the square of the inverse of the SNR as diagonal elements, and Gy denotes the

contribution matrix A = GyK. In this calculation of the measurement noise error, the SNR must be the real one coming from

the noise in the spectra, and not a regularization one as can be chosen in the retrieval process (as in Eq. 1; see also Sect. 2.2).

For the HCHO spectra used in this study, this SNR can vary between 100 for the worst cases and 3000, with a mean of about

700-1000 for the Bruker 120/5 HR instruments, and 500 for the Bomem DA8.5

The forward model parameters error covariance matrices Sf are calculated according to:

Sf = (GyKb)Sb(GyKb)T, (3)

where Sb is the covariance matrix of b, the vector of model parameters. For each individual model parameter, the Kb sensitivity

matrix is mostly calculated by using analytic derivatives, while the covariance matrix Sb is an estimate of the uncertainty on

the model parameter itself.5

Effort has been made in this study to harmonize the uncertainty budget at all sites. This is done by calculating across the

network the errors from the same model parameters (solar zenith angle, temperature, spectroscopic line parameters, baseline, ...)

and by choosing the same Sb matrix for relevant parameters (i.e. when they are not site or instrument dependent like e.g. for the

spectroscopic line parameters). However, some differences remain between the SFIT4 and PROFFIT codes that result in small

differences still occurring between the two groups of users, despite the use of harmonized parameters. For the SFIT4 users,10

the random uncertainty given in Table 3 is dominated by the measurement noise (Eq. 2). We see from Table 3 that the random

error is between 1.0 and 3.6×1014 molec/cm2 for the SFIT4 stations equipped with the high-resolution Bruker spectrometers

120/5 HR or M (the higher values coming from the 120/125 M instruments at Paramaribo and PortoVelho), while it can reach

5.1×1014 with the Bomem DA8 in Toronto. For the PROFFIT users, the random uncertainty is calculated a little bit larger

(from 3.5 to 5.3 ×1014) for the sites with high-resolution spectrometers, and 11.1×1014 with the low-resolution spectrometer15

Bruker Vertex 80 at Mexico City. The main difference between SFIT4 and PROFFIT is the additional error calculated at the

PROFFIT stations due to the channeling of the spectra. However, we give also in Table 3 the mean differences between two

subsequent FTIR measurements taken within 30 minutes (Diff30), as an upper limit for the total random uncertainty: this

difference can be larger than the error budget if HCHO has faster variability than 30 minutes, but with enough statistics, the

mean differences should not be lower than the total random errors. We see that this empirical upper estimation of total random20

uncertainty has a median value (2.8×1014 molec/cm2) very close to the median total random uncertainty obtained by error

propagation theory (2.6×1014 molec/cm2), which gives confidence in the overall FTIR error estimation. At all the PROFFIT

sites, except the highly polluted one (Mexico city), the total random uncertainty is larger than the Diff30, which could be an

indicator that the uncertainty calculated in PROFFIT is slightly too conservative, probably due to this additional channeling

error that would be estimated too large. For SFIT4 users, the Diff30 values are usually close, within 0.5×1014 molec/cm2, to25

the calculated total random uncertainty, with the exception of Ny-Alesund and Lauder, where the small calculated errors of

1.9 and 1.6×1014 molec/cm2, respectively, might be a little bit optimistic, and with the exception of Toronto, Wollongong and

Paramaribo where 7 to 13×1014 molec/cm2 differences are observed between the Diff30 values and the total random errors.

For these three stations and Mexico City, HCHO might has a faster variability than 30 minutes.
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After the measurement noise error (and the channeling for PROFFIT users), the largest contributions to the model parameters30

random uncertainty are coming from the temperature, the interfering species, and the off-set baseline. For temperature, the Sb

matrix has been estimated using the differences between an ensemble of NCEP and sonde temperature profiles at Reunion

Island, leading to 2 to 4 K in the troposphere and 3 to 6 K on the stratosphere. this matrix is currently used by all SFIT4 users,

while the PROFITT users, these value are chosen smaller (1 K in the troposphere, 2 K up to the middle/upper stratosphere, and

5 K for the highest levels). For each interfering species, the associated Sb matrix is the covariance matrix obtained with the

WACCM v4 climatology. At some stations, the ILS is also a high contribution to the random error budget.

If one uses the FTIR HCHO measurements to validate a model or a satellite with fine-vertical resolution, the random uncer-

tainty in Table 3 (4th column) is sufficient for making correct comparisons, because the smoothing error due to the low-vertical

resolution of the FTIR measurements is vanishing if one takes into account the FTIR averaging kernels in the comparisons5

(Rodgers and Connor, 2003). However, if one wants to have a better knowledge of the real precision of the FTIR data them-

selves, this smoothing uncertainty can be estimated using the smoothing error covariance Ss (Rodgers, 2000):

Ss = (I−A)Svar(I−A)T , (4)

where Svar should represent the natural variability of the target molecule. For HCHO, this Svar variability matrix is unfor-

tunately not well known due to the poor number of vertically resolved measurements. In Table 3, the smoothing errors have10

been calculated taking the covariance matrices obtained using the WACCM v4 profiles at each station as an approximation of

the Svar matrices. However, models usually underestimate the variability, and we expect that the smoothing errors provided

here may be underestimated, especially in locations where HCHO is expected to have stronger vertical gradient variability than

in the model. As an example, in the study of Vigouroux et al. (2009), the Svar was taken from aircraft measurements PEM-

Tropics-B, and led to a smoothing error estimation of 14% at St-Denis, while the present estimation based on the WACCM15

model gives about only 2% for this station.

The dominating systematic uncertainty sources are the spectroscopic parameters: the line intensities and the pressure broad-

ening coefficients of the absorption lines present in our micro-windows. For the HCHO spectroscopic parameters, the linelist

in atm16 is following HITRAN 2012 (Rothman et al., 2013), which used the work of Jacquemart et al. (2010), and we use

10% for the three parameters (line intensity, air- and self- broadening coefficients). The larger error source is then the HCHO20

line intensity parameter, and to a lesser extent the HCHO air-broadening coefficient. In addition, the uncertainties on HCHO

columns due to the interfering species spectroscopic parameters are calculated. The dominant ones were found to be due to

the pressure broadening coefficients of CH4, HDO, and N2O, with an order of magnitude of about 20% of the error due to the

HCHO line-intensity.

The other systematic error sources due to model parameters are lower or within a few percent (ILS, temperature), except for25

the channeling source, which also has a systematic component, for PROFFIT users (from 7 to 17%). We see from the Table 3

that the total systematic uncertainty is between 10 and 17% at the SFIT4 stations. For the PROFFIT stations, it lies between

12% and 31%.
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3 Complete FTIR individual HCHO columns data sets

3.1 A network sampling very low to highly polluted levels of HCHO30

We show in Fig. 5 the individual HCHO total columns obtained at each station. The error bars are the total random uncertainty,

i.e. we do not include the systematic errors in order to better visualize the precision of the FTIR measurements compared to

the observed day-to-day variability. The FTIR network samples a wide range of concentrations. Indeed we can distinguish first

the “clean” sites (shown with the same vertical axis with maximum 15×1015 molec/cm2) such as the Arctic stations (Eureka,

Ny-Alesund, Thule, Kiruna, Sodankyla), the marine stations (Izaña, Mauna Loa, Maïdo, St-Denis, and Lauder; the three former

being in addition high altitude stations), and the high-mountain sites (Zugspitze and Altzomoni). These clean sites can have

HCHO concentrations at the limit of detection (few 1E13 molec/cm2) with mean values of 10-25×1014 molec/cm2 (Table 3),5

except St-Denis which reaches a mean of 39×1014 molec/cm2.

Second, we show the intermediate concentration sites (with the same vertical axis with maximum 30×1015 molec/cm2) such

as the tropical coastal site Paramaribo and the mid-latitudes polluted sites in or close to cities and/or vegetation (Peterhof close

to St-Petersburg, Bremen, Paris, Boulder). These intermediate sites have mean HCHO total columns of 58-73×1014 molec/cm2.

The sites with the highest levels of HCHO (vertical axis 50 or 70×1015 molec/cm2) are Toronto and Mexico City where large10

anthropogenic emissions are indeed expected (mean of 95 and 221×1014 molec/cm2, respectively), and places which are also

affected by large biogenic emissions such as at Wollongong (mean of 79×1014 molec/cm2) and the new site of Porto Velho,

located at the edge of the Amazonian forest (mean of 188×1014 molec/cm2).

3.2 HCHO diurnal cycle

As explained in the introduction, it is crucial in order to reconcile the different results obtained using satellites observing at15

different time (e.g. SCIAMACHY and GOME-2 measuring in the morning and OMI in the afternoon), to have ground-based

observations of the HCHO diurnal cycles (Barkley et al., 2013; De Smedt et al., 2015; Stavrakou et al., 2015). The diurnal

cycle is also important for model validation, since emissions, chemistry and other processes depend on the time of the day.

Our FTIR data set is able now to provide an overview of these diurnal cycles at 21 different locations. To separate the effect of

the strong seasonal cycle (that will be shown in the next section), we give the diurnal cycle at four different seasons in Fig. 6.20

While there is no clear diurnal cycle at the Arctic sites and at some of the mid-latitudes cities during winter (St-Petersburg,

Bremen, Toronto), we usually see an increase from the morning, often more pronounced in June-July-August (and Dec-Jan-Feb

in Southern Hemisphere), at most of the stations (in the cities, but also at marine sites). A maximum is often found around

midday (St-Petersburg, Mexico City, Izaña, St-Denis, Wollongong), or much later in the afternoon (4-6pm), as in Bremen,

Paris, Toronto, Lauder, Altzomoni. Only in a few cases, a minimum is found at midday (St-Petersburg in SON, Zugspitze in25

MAM-SON, Sodankyla in MAM). The marine sites at high altitudes (free of local pollution) have a small minimum at about

8 am (Izaña, Maïdo).

We see from Fig. 6 that the FTIR measurements at Porto Velho do not show a clear pattern, in particular if one is interested

in the 9:30 and 13:30 differences between the overpass of two different satellites (De Smedt et al., 2015). From the one year of

15
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Figure 5. Overview of the individual HCHO total columns (molec/cm2) at each station. The error bars are the total random uncertainty.

When the altitude of the station is higher than 1.5 km, we explicitly give it.

data available at present at this new site, it seems that the diurnal cycle cannot help to reconcile the differences observed over30

Rondonia between GOME-2 and OMI (De Smedt et al., 2015). In contrast, the diurnal cycles observed over cities confirm that

the observation of a positive bias between OMI (13:30) and GOME-2 (9:30) over urban areas can be indeed explained, at least

partly, by the diurnal cycle.
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Figure 6. Diurnal cycles of HCHO total columns (molec/cm2) at each station for the four seasons. The error bars are the standard errors

on the mean: 2×σ/
√

n, with σ the standard deviation and n the number of measurements at a given time. If n < 8, the hourly value is not

shown. The time is the Local Standard Time Meridian (LSTM).

3.3 Long-term HCHO trends

The length of the HCHO time-series allows trends to be derived for some stations. We have calculated the trends at each station

using the monthly mean time series Ym(t) with a simple model including a fit of the seasonal cycles:

Ym(t) = A0 + A1 · cos(2πt/12)+ A2 · sin(2πt/12)

+A3 · cos(4πt/12)+ A4 · sin(4πt/12)5

+A5 · t,

with A5 the annual trend.

It turned out that, due to the very high variability of HCHO, the uncertainties on the trends are often too large to obtain

significant values. A more sophisticated multi-regression model might be able to reduce the uncertainties, but this is beyond

the scope of this paper. However, for a few stations, significant trends are found. They are mainly negative: at St-Petersburg

(-3.9 ± 3.3 %/dec), Mexico City (-9.6±5.1 %/dec), Wollongong (-18.8±10.8 %/dec), and close to significance at Zugspitze

(-7.7±7.7%/dec). Only the marine sites Izaña and St-Denis show positive significant trends (+17.3 ± 15.2 and +15.8 ± 5.25
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%/dec, respectively). Note that at Maïdo, the trend is not significant. A careful combination of the measurements at both

Reunion Island sites (St-Denis + Maïdo) could be carried out in the future.

4 HCHO FTIR and IMAGES model comparisons

In this study, we do not aim to validate the model input parameters or to attribute different emission sources at the different

stations. We use the model to assess the internal consistency of the network using harmonized retrieval settings. This means10

that we expect that for the same latitude regions and/or type of sites (polluted; clean), the comparisons with the model will give

consistent biases.

4.1 IMAGES model description

The IMAGESv2 global model calculates the distribution of 170 chemical compounds gases with a time step of 6 hours at

2◦×2.5◦ resolution, with 40 a hybrid (σ-pressure) levels in the verticals between the surface and the lower stratosphere (44 hPa

level). The effect of diurnal variations is accounted for through correction factors on the photolysis and kinetic rates obtained

from model simulations with a time step of 20 minutes, which are also used to calculate the diurnal shapes of formaldehyde5

columns required for the comparison with FTIR data. Meteorological fields (winds, temperature, humidity, 3-dimensional

cloud cover, solid and liquid cloud water content, large-scale and convective precipitation rates, visible downward radiation,

convective updraft fluxes, boundary layer diffusivities, snow depth, sea ice fraction, surface roughness lengths, surface sensible

heat flux, friction velocity, etc.) are obtained from ERA-Interim analyses of the European Centre for Medium-range Weather

Forecasts (ECMWF).10

Anthropogenic emissions of NOx, CO, SO2, and NMVOC are provided by the the Hemispheric Transport of Air Pollu-

tion dataset version 2 (HTAPv2) (Janssens-Maenhout et al., 2015), with the NMVOC speciation provided by the emission

inventory of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) (Lamarque et al., 2010).

Emissions from open vegetation fires are taken from the last version of the Global Fire Emissions Database, GFED4s, which

includes the contribution of small fires (Randerson et al., 2012; Giglio et al., 2013). The GFED data are available at daily15

frequency at 0.25◦× 0.25◦ from 1997 through the present (http://www.globalfiredata.org). The vertical distribution of these

emissions follows Sofiev et al. (2013). Isoprene and monoterpenes emissions are obtained from the MEGAN-MOHYCAN

model (Müller et al., 2008; Stavrakou et al., 2014; Guenther et al., 2012) for all years of the study period at a resolution of

0.5◦×0.5◦ (http://tropo.aeronomie.be/models/isoprene.htm). Methanol biogenic emissions are obtained from the inverse mod-

eling study of Stavrakou et al. (2011). Besides the dependence on temperature, visible radiation, leaf area and leaf age, the20

model accounts for the inhibition of isoprene emissions under drought conditions through a dimensionless soil moisture ac-

tivity factor (γSM). However, the parameterization of γSM is very uncertain, as discussed in (Bauwens et al., 2016), and we

assume γSM = 1 in this study. The average global annual emissions are 419 Tg/yr isoprene, 100 Tg/yr methanol and 103 Tg/yr

monoterpenes.
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The chemical degradation mechanism of pyrogenic NMVOCs is described in Bauwens et al. (2016). The oxidation mecha-25

nism for isoprene is also based on Bauwens et al. (2016), with a few updates. It accounts for the revised kinetics of isoprene

peroxy radicals according to the Leuven Isoprene Mechanism version 1 (LIM1) (Peeters et al., 2014) and further modified to

account for laboratory findings (Teng et al., 2017; Bates et al., 2016). The formaldehyde yield in isoprene oxidation by OH is

close to 2.4 mol/mol in high NOx (1 ppbv NO2, after 2 months of simulation) and 1.9 mol/mol at low NOx (0.1 ppbv NO2).

The chemical mechanism for monoterpenes is simplified, with product yields of formaldehyde, acetone, methylglyoxal and30

glyoxal based on box model calculations using the α- and β-pinene oxidation mechanism from the Master Chemical Mecha-

nism (MCM) (Saunders et al., 2003). The overall formaldehyde yield is 4.2 HCHO per monoterpene oxidized, coming down

to 2.3 after subtracting the contributions of acetone and methylglyoxal oxidation. This yield is further reduced by 45% to ac-

count for wet/deposition of intermediates and secondary organic aerosol formation. The large deposited fraction is uncertain,

but appears justified by to the larger number and lower volatility of intermediates involved in formaldehyde formation from

monoterpene oxidation.

The calculation of the model columns at the FTIR stations accounts for its location in the horizontal (nearest model pixel),

for the FTIR a priori profiles and averaging kernels as prescribed in Rodgers and Connor (2003), as well as for the station

altitude above sea level. When the model surface lies higher than the station, the model column is increased by a partial5

column assuming a constant mixing ratio between the two altitudes, taken equal to the value at the lowermost model level. The

monthly averaged formaldehyde columns are calculated by accounting for the temporal sampling of the observations at each

site and month. Also, the local time of each observation is taken into account through the formaldehyde diurnal shape factors

calculated by the model with a time step of 20 minutes.

4.2 HCHO monthly means and seasonal cycle comparisons10

We compare the monthly means of FTIR HCHO total columns at each station with the IMAGES columns calculated for the

2003-2016 period. The time-series of both products are shown in Fig. 7. Since the random uncertainty of the FTIR monthly

means is divided by the square root of the number of measurements within each month, the dominant contribution to the

FTIR error bars in Fig. 7 is the systematic uncertainty (estimated at 12-31%). Except for very few cases (Mexico City and

Paramaribo), the model is in overall good agreement in terms of absolute levels (Fig. 7) and seasonal cycle (Fig. 8) with the15

FTIR measurements.

For each station the correlation, the bias and the standard deviation (std) of the statistical comparisons between the monthly

means, mean(IMAGES (smoothed) -FTIR) / mean(FTIR), are summarized in Table 4. The median correlation between FTIR

and IMAGES for the 21 stations is very high (0.81), with weaker values at the Mexican stations (0.4/0.5) and at Mauna

Loa (0.10). The median standard deviation for all comparisons is 25% (ranging from 11% to 41%). This agreement is good20

considering the FTIR variability (i.e. the std) of HCHO monthly means (median of 35%). The standard deviation of the

comparisons can be explained partly by the lower variability of the model monthly means (31%) compared to FTIR, as seen

in Fig. 7. In addition, the variability of the model data within a month is also much smaller (median of about 11%; this STD

within a month is shown as magenta error bars in Fig. 7) than the FTIR variability within a month (mean of about 28%).
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Figure 7. Monthly means of HCHO total columns (molec/cm2) at each station for FTIR measurements (blue) and model data (magenta

line for “raw” model data; magenta diamonds for model data smoothed by FTIR AK). The FTIR error bars represent the total uncertainties

on monthly means which, due to monthly averaging, are mainly the systematic uncertainties. The model error bars represent the standard

deviation of the model for each month.

20

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-22
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 8 February 2018
c© Author(s) 2018. CC BY 4.0 License.



J F M A M J J A S O N D
0

0.5

1

1.5

2

2.5

3
1015 Eureka - 80°N

FTIR all data

FTIR in coincidence with IMAGES

IMAGES

IMAGES smoothed

J F M A M J J A S O N D
0

0.5

1

1.5

2

2.5

3
1015 Ny-Alesund - 79°N

J F M A M J J A S O N D
0

0.5

1

1.5

2

2.5

3
10

15 Thule - 77°N

J F M A M J J A S O N D
0

1

2

3

4

5

6
10

15 Kiruna - 68°N

J F M A M J J A S O N D
0

1

2

3

4

5

6
10

15 Sodankyla - 67°N

J F M A M J J A S O N D
0

5

10

15
10

15 StPetersburg - 60°N

J F M A M J J A S O N D
0

5

10

15
1015 Bremen - 53°N

J F M A M J J A S O N D
0

5

10

15
10

15 Paris - 49°N

J F M A M J J A S O N D
0

1

2

3

4
10

15 Zugspitze - 47°N

J F M A M J J A S O N D
0

0.5

1

1.5

2

1016 Toronto - 44°N

J F M A M J J A S O N D
0

2

4

6

8

10

12

14
1015 Boulder - 40°N

J F M A M J J A S O N D
0

1

2

3

4
10

15 Izana - 28°N

J F M A M J J A S O N D
0

0.5

1

1.5

2
1015 MaunaLoa - 20°N

J F M A M J J A S O N D
0

1

2

3

1016 MexicoCity - 19°N

J F M A M J J A S O N D
0

1

2

3

4

5
1015 Altzomoni - 19°N

J F M A M J J A S O N D
0

2

4

6

8

10

12

14
1015 Paramaribo - 6°N

J F M A M J J A S O N D
0

1

2

3

4

5

6

1016 PortoVelho - 9°S

J F M A M J J A S O N D
0

1

2

3

4

5

6

7
1015 StDenis - 21°S

J F M A M J J A S O N D
0

1

2

3

4
1015 Maido - 21°S

J F M A M J J A S O N D
0

0.5

1

1.5

2

1016 Wollongong - 34°S

J F M A M J J A S O N D
0

1

2

3

4

5
1015 Lauder - 45°S

Figure 8. Seasonal cycle of HCHO total columns (molec/cm2) at each station for FTIR measurements (blue) and model data (magenta line

for “raw” model data; magenta diamonds for model data smoothed by FTIR AK). The FTIR error bars represent mainly the systematic

uncertainties. The model error bars represent the standard deviation of the model for each month. Only the model data in coincidence with

FTIR measurements are taken into account in these seasonal cycles.

The median bias of IMAGES and FTIR differences is small (-15%) and within the FTIR systematic uncertainty estimated25

at 12-31%. However, the biases range from -64% to +51%, which requires an investigation of their possible reasons. The

main source of systematic uncertainty is the spectroscopic parameters, which have been harmonized in this work, each station

using the same line parameters database, and the same spectral micro-windows. Therefore, it is expected that all FTIR sta-

tions should provide consistent HCHO total columns within 5-17% (systematic errors due to other sources than spectroscopic

ones). To check this, we divide the FTIR stations according to their concentrations levels and latitudes; and use the model for30

comparisons.
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Table 4. Correlation (Corr), bias ± standard deviation (STDstat) of the statistical comparisons between the monthly means,

mean(IMAGES (smoothed) -FTIR) / mean(FTIR). Also given: the mean of the standard deviations in the IMAGES and FTIR monthly means,

i.e. the variability within a month (STDm), and the standard deviation of the whole FTIR and IMAGES monthly mean time-series (STDall).

All numbers, except the correlations, are given in %.

Station Corr bias ± STDstat bias ± STDstat bias ± STDstat STDm IMAGES/FTIR STDall IMAGES/FTIR

All All JJA DJF Within a month All

Eureka 0.76 -20 ± 21 -26 ± 15 +6 ± 22 10 / 28 28 / 32

Ny-Alesund 0.72 -17 ± 23 -20 ± 18 - 9 / 25 30 / 33

Thule 0.74 -28 ± 24 -28 ± 23 -3 ± 18 9 / 31 28 / 35

Kiruna 0.80 +32 ± 27 +22 ± 20 +27 ± 37 10 / 28 31 / 44

Sodankyla 0.85 +11 ± 33 -4 ± 27 +56 ± 35 12 / 34 37 / 60

St-Petersburg 0.94 -16 ± 29 -25 ± 20 -14 ± 23 12 / 32 43 / 60

Bremen 0.87 -15 ± 30 -19 ± 27 -16 ± 40 8 / 20 42 / 56

Paris 0.84 -22 ± 29 -30 ± 25 -17 ± 40 6 / 19 30 / 45

Zugspitze 0.87 +41 ± 26 +32 ± 24 +59 ± 24 10 / 31 37 / 51

Toronto 0.88 -26 ± 23 -25 ± 16 -39 ± 44 15 / 40 46 / 47

Boulder 0.93 -17 ± 22 -17 ± 15 -13 ± 32 12 / 24 47 / 52

Izaña 0.81 -3 ± 20 -19 ± 9 +22 ± 15 8 / 18 14 / 29

Mauna Loa 0.10 +13 ± 35 +14 ± 45 +24 ± 35 9 / 28 9 / 34

Mexico City 0.45 -64 ± 21 -59 ± 17 -66 ± 26 17 / 37 18 / 23

Altzomoni 0.43 +26 ± 41 +49 ± 22 -6 ± 22 16 / 42 35 / 29

Paramaribo 0.67 +51 ± 25 +59 ± 15 +85 ± 17 12 / 35 17 / 33

DJF JJA

Porto Velho 0.87 +43 ± 35 - +36 ± 35 24 / 27 39 / 26

St-Denis 0.71 -7 ± 13 -3 ± 12 -9 ± 15 9 / 27 16 / 18

Maïdo 0.87 -7 ± 11 +3 ± 7 -14 ± 7 13 / 20 23 / 20

Wollongong 0.83 -26 ± 37 -29 ± 34 -3 ± 35 18 / 50 43 / 59

Lauder 0.77 -25 ± 22 -24 ± 17 -26 ± 26 11 / 31 31 / 35

“Summer” “Winter”

Median 0.81 -15 ±25 -19 ±19 -5 ±26 11 / 28 31 / 35

4.2.1 Clean Arctic sites

We distinguish two groups of Arctic sites: Eureka, Ny-Alesund and Thule which are very remote (77-80°N), and two European

sites, Kiruna and Sodankyla (67-68°N). As seen in Table 4, the former group shows similar negative biases of the model
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compared to the data (-20 / -17/ -28%), while the latter group shows positive biases (+32 / +11%). Except at Kiruna, the

biases are not constant through the year, the model showing less pronounced seasonal cycles (see also Fig. 8). The model

underestimates the summer HCHO levels at the three 77-80°N stations (-26 / -20 / -28%), while the winter levels are in close

agreement (+6/ -3%). At the 67-68°N stations, the model is positively biased in winter (+27 / +56%), as well as in summer

at Kiruna (+22%). Note that the Arctic sites do not have measurement during polar night, so the winter months correspond5

basically to February (Fig. 8).

4.2.2 Mid-latitude cities

Very similar biases (-16 / -15 / -22%) between IMAGES and FTIR are obtained at the three European cities, St-Petersburg (the

site is actually at Peterhof, a small coastal city at about 30 km west of St-Petersburg), Bremen, and Paris. As for the Arctic

sites, the model underestimates the amplitude of the seasonal cycle (Fig. 8), leading to smaller biases in winter (-14 to -17 %)10

compared to summer (-19 to -30 %).

The Northern American urban sites Toronto and Boulder give similar biases (-26%/-17%), especially in summer (-25%/-

17%). Toronto is the only mid-latitude urban site where the model shows a higher underestimation of the HCHO levels in

winter (-39%).

4.2.3 High-mountain sites15

The mountain sites are more difficult to model especially when they are close to cities. They are often very clean sites, but the

model cannot reproduce this at the current resolution (2◦× 2.5◦) when they are surrounded by emission sources in the same

pixel. This seems to be the case at Altzomoni, which lies in the same model pixel as Mexico City, leading to an overestimation of

26%, much larger in summer (+49%), and at the European station Zugspitze where the model overestimates the HCHO levels by

+41%. Note that in the study of Franco et al. (2015), a negative bias (-13%) was observed between FTIR at Jungfraujoch (47◦N,20

8◦E) and IMAGES, but the retrieval settings used were different than in the present study. Only a change in the spectroscopic

database, from HITRAN 2008 to HITRAN 2012, led to lower HCHO columns by 49% at Jungfraujoch (Franco et al., 2015).

It is therefore not possible at present to compare the biases obtained at these two close stations.

At the mountain site of Izaña, located at a clean marine area, the model and FTIR are in overall good agreement (-3%), with

a negative bias in summer (-19%) and a positive one in winter (+22%), as a result of the weak seasonal amplitude in the model.25

A moderate positive model bias is calculated at Mauna Loa (+13%), more pronounced in winter (+24%), and a good agreement

is seen between the model and FTIR mean seasonal cycle (Fig. 8). The observed variability (34%) is however important at

this site, and similar to e.g. the clean Arctic sites (Fig. 7), with values ranging from 0.5 to 2.5×1015 molec/cm2. This is not

reproduced by the model values lying within 1-1.5×1015 molec/cm2. The reasons of the pronounced observed variability could

be related to the variability of transport from continental areas to the Mauna Loa site.30

23

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-22
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 8 February 2018
c© Author(s) 2018. CC BY 4.0 License.



4.2.4 Central and South American sites

The model falls short in reproducing the enhanced HCHO levels observed at Mexico City (ca 2×1016 molec/cm2), mainly due

to the coarse model resolution(2◦×2.5◦), as suggested by the strong negative bias (-64%), which is almost constant across the

year.

Comparison at two sites in South America, the coastal site of Paramaribo and the Porto Velho site at the edge of the Amazo-5

nian forest, indicates a consistent model overestimation (+51 / +43%). At Porto Velho, this overestimation is more significant

during the dry season (August-September, Fig. 8), which corresponds to the maximum of fire intensity in Amazonia. An over-

estimation of biogenic (isoprene) and biomass burning emissions in Amazonia was already found in IMAGES in the study of

Bauwens et al. (2016).

4.2.5 Southern Hemisphere 21-45°S sites10

The two marine sites at Reunion Island (St-Denis at sea level, and Maïdo at 2.2 km altitude) show a small model bias (-7%)

and standard deviation, especially at Maïdo (11%). At these sites, HCHO shows the lowest variability in the monthly means

(18-20%), and the model reproduces quite well the seasonal cycle. As shown in Fig. 8, the largest seasonal bias is not found in

austral summer (DJF) as seen in the Northern Hemisphere sites, but during September-November months, which correspond

to the maximum of the biomass burning period in Southern Africa and Madagascar, close to Reunion Island. The biomass15

burning source at this location might be underestimated, while it was overestimated in South America.

The Wollongong site shows the same behavior as most of the Northern Hemisphere sites: an overall underestimation of the

model (-26%), larger in austral summer (-29%). A first look on the Lauder comparison gives a similar annual bias (-25%),

which remains constant over the year, as seen in Table 4 and Fig. 8. However, Fig. 7 shows that during the austral winters

(JJA) 2012 to 2015, the FTIR time-series presents unusually high columns. By limiting the comparison to the first years of the20

period, a better agreement with the model in winter is obtained at Lauder as often observed at other sites.

5 Conclusions

Only five NDACC FTIR sites delivered HCHO time-series until now (Paton-Walsh et al., 2005; Jones et al., 2009; Vigouroux et al.,

2009; Viatte et al., 2014; Franco et al., 2015), using different retrieval settings. The small number of stations and the bias differ-

ences associated with the different retrieval strategies made it difficult to use the FTIR network as a coherent tool for satellite or25

model validation. In this study, we have designed a harmonized HCHO retrieval strategy to derive total columns at 21 stations,

at locations characterized by very different concentrations, from very clean Arctic sites where HCHO is at the limit of detection

(a few 1013 molec/cm2) to highly polluted sites such Mexico City or Porto Velho, near the Amazonian forest, where columns

up to 7×1016 molec/cm2 have been observed. This network includes well-established NDACC stations, as well as several new

sites (Sodankyla, Boulder, Paris, Porto Velho) that aim to be affiliated with NDACC. The FTIR network is also growing, with30

new sites such as Hefei in China, which will again expand its spatial coverage.
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We have presented the retrieval settings that have been optimized for this challenging species, and the FTIR HCHO products

have been characterized by their averaging kernels, and their uncertainty budget. The systematic uncertainty of an individual

HCHO total column measurement lies between 11 and 31%, with still some differences between the SFIT4 code users (11-

17%) and the PROFFIT users (12-31%), which needs to be investigated in the future within the NDACC InfraRed Working

Group. The random uncertainty lies between 1 and 11×1014 molec/cm2, with a median value of 2.6×1014 molec/cm2, the5

high maximum value being due to the lower quality of the Bruker Vertex compared to the high resolution ones (Bruker 120/5M

or 120/5HR).

In addition to the well-defined seasonal cycles, the diurnal cycles were presented at each site. These observations are crucial

to interpret the differences observed between satellites measuring at different local times. For example, the diurnal cycle at

Porto Velho which shows insignificant variations suggests that the negative bias observed over Rondônia between OMI (13:30)10

and GOME-2 (9:30) (De Smedt et al., 2015) is unlikely due to the diurnal cycle. In contrast, the FTIR diurnal cycles in the

cities confirm that the positive bias between OMI and GOME-2 over urban areas is likely due, at least partly, to the diurnal

cycle.

The monthly mean time-series as well as the seasonal cycles have been compared to the IMAGES model. We aimed, not to

evaluate the model, but to show that the FTIR network provides coherent absolute values and seasonal cycles. We observed an15

overall good agreement with IMAGES, the model usually (but not always) underestimating the HCHO total columns (median

bias ± standard deviation of -15% ± 25%), with a more pronounced bias during summer (-19% ± 19%). The similar biases

obtained at stations under similar conditions (clean Arctic sites, urban sites, marine sites) strengthen our confidence in the

harmonization of the HCHO products within the network. When the model showed different behavior for some of the stations,

we could explain it by either the too large size of the model pixel (2.0◦×2.5◦), especially for high-altitude sites, as in Zugspitze,20

Altzomoni, Mexico City; or an overestimation of the biogenic and biomass burning sources in South America (Paramaribo,

Porto Velho), which was already pointed out in Bauwens et al. (2016). However for a few sites, the behavior of the model

remained unexplained (positive biases at Kiruna and Sodankyla, the too low model variability at Mauna Loa).

These HCHO time-series, harmonized and well-characterized, provide an important data set for past and present satellite,

and model validation. They are continuously extended by new measurements and will be used in the coming years for the25

validation of new satellites, such as Sentinel 5P, and Sentinel 4.
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